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Abstract

These examples demonstrates the functions in the smwrStats

package that aid linear regression analysis. The �rst set of examples uses
the Haan (1977) dataset C14 from Helsel and Hirsch (2002) to replicate
the analysis done in section 11.6 in their book. Please note that there
are only 13 observations in the dataset and most practitioners would
prefer more observations for this kind of multiple regression analysis;
Harrell (2001) has some very good guidance in chapter 4 of his book.
See section Subset Selection Comments about some speci�c for this
example. The second set of examples uses the CuyhaogaTDS dataset in
the smwrData package. Those examples demonstrate bias correction for a
log-transformed response.
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1 Introduction

These examples use data from the smwrData package. The data are created
and retrieved in the following code.

> # Load the smwrStats package

> library(smwrStats)

> # Create the Haan dataset

> Haan1977 <- data.frame(

+ ROFF=c(17.38, 14.62, 15.48, 14.72, 18.37, 17.01, 18.2, 18.95, 13.94, 18.64,

+ 17.25, 17.48, 13.16),

+ PCIP=c(44.37, 44.09, 41.25, 45.5, 46.09, 49.12, 44.03, 48.71, 44.43, 47.72,

+ 48.38, 49, 47.03),

+ AREA=c(2.21, 2.53, 5.63, 1.55, 5.15, 2.14, 5.34, 7.47, 2.1, 3.89, 0.67,

+ 0.85, 1.72),

+ SLOPE=c(50, 7, 19, 6, 16, 26, 7, 11, 5, 18, 21, 23, 5),

+ LEN=c(2.38, 2.55, 3.11, 1.84, 4.14, 1.92, 4.73, 4.24, 2, 2.1, 1.15, 1.27,

+ 1.93),

+ PERIM=c(7.93, 7.65, 11.61, 5.31, 11.35, 5.89, 12.59, 12.33, 6.81, 9.87,

+ 3.93, 3.79, 5.19),

+ DI=c(0.91, 1.23, 2.11, 0.94, 1.63, 1.41, 1.3, 2.35, 1.19, 1.65, 0.62, 0.83,

+ 0.99),

+ Rs=c(0.38, 0.48, 0.57, 0.49, 0.39, 0.71, 0.27, 0.52, 0.53, 0.6, 0.48, 0.61,

+ 0.52),

+ FREQ=c(1.36, 2.37, 2.31, 3.87, 3.3, 1.87, 0.94, 1.2, 4.76, 3.08, 2.99,

+ 3.53, 2.33),

+ Rr=c(332, 55, 77, 68, 68, 230, 44, 72, 40, 115, 352, 300, 39)

+ )

> # load the data library and get the Cuyahoga data

> library(smwrData)

> data(CuyahogaTDS)
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2 Subset Selection

The allReg function creates a data frame that contains candidate models and
selection criteria. Note that the name of the response variable is taken from
the column name for the y argument if it is rectangular, and from the
argument name if it is not. Two general approaches for specifying the x and y

arguments. The �rst uses the with function and is most useful when a subset
of columns are explanatory variables, but it is probably more clear in
identifying the variables. The second, which is commented out, requires less
typing and can be useful when most columns are explanatory variables as in
this case. Note the argument lin.dep is used to protect agiant potential
linear dependiencies�the defualt is to require atleast 10 more observations
than vexplanatory variables. For these data lin.dep is set to 1 for these data
because there are 13 observations and 9 explanatory variables.

As a preliminary

> # Create the allReg output dataset

> HaanSub <- with(Haan1977, allReg(cbind(PCIP, AREA, SLOPE, LEN, PERIM,

+ DI, Rs, FREQ, Rr), ROFF, lin.dep=1))

> # An alternative call, note the use of the drop argument

> #HaanSub <- allReg(Haan1977[, -1], Haan1977[, 1, drop=FALSE], lin.dep=1)

> # What are the "best" 5 models by Cp

> head(HaanSub[order(HaanSub$Cp),])

model.formula nvars stderr R2 adjr2

13 ROFF ~ PCIP + PERIM + DI + FREQ + Rr 5 0.5157295 95.85716 92.89799

10 ROFF ~ PCIP + PERIM + DI + Rr 4 0.6201892 93.15309 89.72964

11 ROFF ~ PCIP + AREA + PERIM + Rr 4 0.6271707 92.99807 89.49710

12 ROFF ~ PCIP + PERIM + FREQ + Rr 4 0.6418703 92.66600 88.99900

7 ROFF ~ PCIP + PERIM + Rr 3 0.6880745 90.51866 87.35822

14 ROFF ~ PCIP + AREA + SLOPE + PERIM + Rr 5 0.5853334 94.66345 90.85162

Cp press

13 2.895526 6.907075

10 3.438170 7.956472

11 3.583937 7.665134

12 3.896182 9.514826

7 3.915331 9.968029

14 4.017979 7.249822

Helsel and Hirsch (2002) state "Based on Cp, the best model would be the 5
variable model having PCIP, PERIM, DI, FREQ and Rr as explanatory
variables�the same model as selected by allReg. Remember that there is no
guarantee that stepwise procedures regularly select the lowest Cp or PRESS
models. The advantage of using an overall statistic like Cp is that options are
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given to the scientist to select what is best. If the scientist decided AREA
must be in the model, the lowest CP model containing AREA (the same
four-variable model) could be selected. Cp and PRESS allow model choice to
be based on multiple criteria such as prediction quality (PRESS), low VIF,
cost, etc."

To select a good model, Helsel and Hirsch (2002) describe several criteria in
section 11.7. Those criteria need to be considered in addition to the
assumptions of linear regression (section 9.1.1) and regression diagnostics
(sections 9.5 and 11.5).

The output from allReg can be used to evaluate any of the selected models,
by using the as.formula function on the contents of the model.formula
column as in the following example.

lm(as.formula(HaanSub[13, "model.formula"]), data=Haan1977)
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3 Model Diagnostics

The multReg function is designed to assist the user by performing many of the
model diagnostic tests and plots suggested by Helsel and Hirsch (2002). This
section will discuss the use of the multReg function to perform the selected
model diagnostics and set up diagnostic plots for the model that Haan (1977)
used. The Support Functions illustrates the individual functions the
smwrStats package that aid linear regression analysis.

The code below speci�es the model, created the regression model and prints
the diagnostic tests.

> # Create the regression model

> Haan.lm <- lm(ROFF ~ PCIP + PERIM + Rr, data=Haan1977)

> # Create the diagnostic object and print it.

> Haan.reg <- multReg(Haan.lm)

> print(Haan.reg)

Call:

lm(formula = ROFF ~ PCIP + PERIM + Rr, data = Haan1977)

Residuals:

Min 1Q Median 3Q Max

-1.0050 -0.4747 0.0203 0.5085 0.8361

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -9.64420 4.44080 -2.17 0.05795

PCIP 0.42957 0.09302 4.62 0.00126

PERIM 0.61658 0.07485 8.24 1.8e-05

Rr 0.01042 0.00201 5.19 0.00057

Residual standard error: 0.688 on 9 degrees of freedom

Multiple R-squared: 0.905, Adjusted R-squared: 0.874

F-statistic: 28.6 on 3 and 9 DF, p-value: 6.18e-05

press: 9.97

AIC: 32.4

BIC: 35.2

Anova Table (Type II tests)

Response: ROFF

Sum Sq Df F value Pr(>F)

PCIP 10.1 1 21.3 0.00126

PERIM 32.1 1 67.9 1.8e-05
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Rr 12.8 1 26.9 0.00057

Residuals 4.3 9

Variance inflation factors

PCIP 1.30

PERIM 1.46

Rr 1.46

Test criteria

leverage cooksD dfits

0.923 0.939 1.446

Observations exceeding at least one test criterion

ROFF yhat resids stnd.res stud.res leverage cooksD dfits

8 18.9 19.6 -0.683 -1.4 -1.50 0.500 0.492 -1.50*

13 13.2 14.2 -1.005 -1.8 -2.12 0.342 0.421 -1.53*

The printed results are comprised of several sections. The �rst section is the
regression summary, consisting of the call, residual statistics, the coe�cient
table (without the signi�cance stars), and statistics of the overall �t; the next
section is the analysis of variance (ANOVA) table, which is most useful for
assessing the overall signi�cance of complex terms such as �rst- and
second-order polynomials (quadratic) or sine and cosine transforms
(fourier); the third section is a listing of the variance in�ation factors (VIFs);
and the last section shows the selected test criteria and the observations that
exceed at least one of those criteria.

The following sections highlight selected diagnostic plots. When using the
plot function in an interactive session, it is not necessary to specify which plot
to create nor to set up a graphics device. The only call that would be
necessary would be plot(Haan.reg). Note that plot number 4 cannot be
shown because it describes serial correlation and these data are not collected
at speci�c points in time.
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4 Response vs. Fitted Plot

The �rst diagnostic plot is response vs. �tted. The second is residuals vs �tted
and is not shown. The basic di�erence is that the deviation shown by the
smoothed line is exaggerated in the second plot! Each observation is plotted,
the dashed line is the 1:1 �t and the solid line is a loess smooth (function
loess.smooth) using the "symmetric" option for the family argument. The
regression equation with the residual standard error.

> # setSweave is a specialized function that sets up the graphics page for

> # Sweave scripts. For interactive use, it should be removed and the

> # default setting for set.up can be used.

> setSweave("regplot01", 5, 5)

> plot(Haan.reg, which=1, set.up=FALSE)

> # Required call to close PDF output graphics

>

> graphics.off()
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Figure 1. The residual vs. �tted diagnostic plot.
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5 Scale-Location Plot

The third diagnostic plot is the scale-location plot, which plots the square root
of the residuals vs. the �tted values. It is useful for diagnosing
heteroscedasticity and is described by Cleveland (1993). Each observation is
plotted, the dashed line is the theoretical mean, assuming a normal
distribution, and the solid line is a loess smooth (function loess.smooth using
the "symmetric" option for the family argument. Wooding's test for
heteroscedasticity is also shown�it is a straightforward interpretation of the
data, simply the results of the Spearman correlation of the data that are
shown. The null hypothesis is that the residuals are homoscedastic.

> # setSweave is a specialized function that sets up the graphics page for

> # Sweave scripts. For interactive use, it should be removed and the

> # default setting for set.up can be used.

> setSweave("regplot02", 5, 5)

> plot(Haan.reg, which=3, set.up=FALSE)

> # Required call to close PDF output graphics

> graphics.off()
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Figure 2. The scale-location diagnostic plot.
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6 Probability Plot

The �fth diagnostic plot tests for the normality of the residuals. Each
observation is plotted, the solid line is the theoretical �t, assuming a normal
distribution. The PPCC test for normality is also shown. The null hypothesis
is that the residuals are from a normal distribution.

> # setSweave is a specialized function that sets up the graphics page for

> # Sweave scripts. For interactive use, it should be removed and the

> # default setting for set.up can be used.

> setSweave("regplot03", 5, 5)

> plot(Haan.reg, which=5, set.up=FALSE)

> # Required call to close PDF output graphics

> graphics.off()
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Figure 3. The normal probability diagnostic plot.
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7 In�uence Plot

The sixth diagnostic plot shows the approximate in�uence of each observation
identi�ed as exceeding one of the test criteria. Each observation is plotted, the
solid line is the actual �t. Each identi�ed observation is plotted in a di�erent
color and the �tted line with that observation removed is plotted in the same
color. The seventh diagnostic plot is a plot of the studentized residual vs. the
�tted value and is not shown in this vignette. Note that the label for
observation number 8 is not shown in this example because it would be outside
the range of the plot area.

> # setSweave is a specialized function that sets up the graphics page for

> # Sweave scripts. For interactive use, it should be removed and the

> # default setting for set.up can be used.

> setSweave("regplot04", 5, 5)

> plot(Haan.reg, which=6, set.up=FALSE)

> # Required call to close PDF output graphics

> graphics.off()
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Figure 4. The in�uence diagnostic plot.
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8 Residual Dependence Plot

The eighth diagnostic plot is actually a series of plots, one for each
explanatory variable. But, a single explanatory variable can be selected
instead of the series, as is shown in this example. Each observation is plotted,
the dashed line is 0, the expected value of the residual for each observation
and the solid line is a loess smooth (function loess.smooth using the
"symmetric" option for the family argument. The results for a second order
polynomial �t is also shown; it is the attained p-value of the squared
explanatory variable added to the model.

> # setSweave is a specialized function that sets up the graphics page for

> # Sweave scripts. For interactive use, it should be removed and the

> # default setting for set.up can be used.

> setSweave("regplot05", 5, 5)

> plot(Haan.reg, which="PERIM", set.up=FALSE)

> # Required call to close PDF output graphics

> graphics.off()
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Figure 5. The residual dependence diagnostic plot.
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9 Support Functions

The prediction error sum of squares (PRESS) is one of the best measures of
the quality of a regression equation (Helsel and Hirsch (2002). PRESS is a
validation-type estimator of error; it sequentially drops a signle observation
then computes its value from the remaining observations and sums the squares
of the di�erences. The press function will compute the PRESS statistic for
any linear regression model created by lm. The following example uses the
previously created regression model on the Haan data.

> # Compute the PRESS statistic

> press(Haan.lm)

[1] 9.968029

The rmse function is a very easy way to extract the root-mean-squared error
or residual standard error from a regression model without running the
summary function on the model.

> # The resdidual standard error is computed by the summary function.

> summary(Haan.lm)

Call:

lm(formula = ROFF ~ PCIP + PERIM + Rr, data = Haan1977)

Residuals:

Min 1Q Median 3Q Max

-1.00496 -0.47475 0.02029 0.50850 0.83609

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -9.644196 4.440796 -2.172 0.05795 .

PCIP 0.429570 0.093023 4.618 0.00126 **

PERIM 0.616580 0.074849 8.238 1.75e-05 ***

Rr 0.010421 0.002007 5.192 0.00057 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.6881 on 9 degrees of freedom

Multiple R-squared: 0.9052, Adjusted R-squared: 0.8736

F-statistic: 28.64 on 3 and 9 DF, p-value: 6.182e-05

> # But can easily be computed using rmse:

> rmse(Haan.lm)
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[1] 0.6880745

Helsel and Hirsch (2002) state "Concern over multi-collinearity should be
strongest when the purpose is to make inferences about coe�cients." The
variance in�ation factor is a good diagnostic for measuring multi-collinearity.
The vif function computes the variance in�ation factor for each variable in
the model.

> # The variance inflation factors:

> vif(Haan.lm)

PCIP PERIM Rr

1.297794 1.455248 1.460949

15



10 Subset Selection Comments

As noted in the openning paragraph, Harrell (2001) describes concerns about
subset selection of explanatory variables and o�ers advice on how to approach
building lregression models. This example demonstrates one of his concerns:
the individual signi�cance of an explanatory variable is not appropiate in the
context of many possible explanatory variables. This example uses the
cor.all function to demonstrate that issue, but has applications beyond
linear regression.

> # Create the correlation structure, and print it:

> Haan.cor <- cor.all(Haan1977)

> print(Haan.cor, digits=3)

Pearson's product-moment correlation

data: Haan1977

ROFF PCIP AREA SLOPE LEN PERIM DI Rs

PCIP-cor 0.3865

PCIP-r!=0 0.192

PCIP-N 13

AREA-cor 0.4709 -0.2470

AREA-r!=0 0.104 0.416

AREA-N 13 13

SLOPE-cor 0.4092 0.0807 -0.1713

SLOPE-r!=0 0.165 0.793 0.576

SLOPE-N 13 13 13

LEN-cor 0.4210 -0.3371 0.8958 -0.2059

LEN-r!=0 0.152 0.260 <0.001 0.500

LEN-N 13 13 13 13

PERIM-cor 0.4647 -0.4149 0.9553 -0.0996 0.9183

PERIM-r!=0 0.110 0.159 <0.001 0.746 <0.001

PERIM-N 13 13 13 13 13

DI-cor 0.3343 -0.1548 0.9083 -0.1614 0.6658 0.8105

DI-r!=0 0.264 0.614 <0.001 0.598 0.013 0.001

DI-N 13 13 13 13 13 13

Rs-cor -0.1532 0.4492 -0.2534 0.0460 -0.5750 -0.4089 0.1498

Rs-r!=0 0.617 0.124 0.404 0.881 0.040 0.165 0.625
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Rs-N 13 13 13 13 13 13 13

FREQ-cor -0.3982 0.0406 -0.4804 -0.3011 -0.5340 -0.4774 -0.3241 0.2940

FREQ-r!=0 0.178 0.895 0.097 0.317 0.060 0.099 0.280 0.330

FREQ-N 13 13 13 13 13 13 13 13

Rr-cor 0.3455 0.4188 -0.5176 0.7973 -0.5359 -0.5144 -0.5017 0.1756

Rr-r!=0 0.248 0.154 0.070 0.001 0.059 0.072 0.081 0.566

Rr-N 13 13 13 13 13 13 13 13

FREQ

PCIP-cor

PCIP-r!=0

PCIP-N

AREA-cor

AREA-r!=0

AREA-N

SLOPE-cor

SLOPE-r!=0

SLOPE-N

LEN-cor

LEN-r!=0

LEN-N

PERIM-cor

PERIM-r!=0

PERIM-N

DI-cor

DI-r!=0

DI-N

Rs-cor

Rs-r!=0

Rs-N

FREQ-cor

FREQ-r!=0

FREQ-N

Rr-cor -0.0762

Rr-r!=0 0.805

Rr-N 13
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> # Now summaryize the signficance of the realtions between ROFF and the other variables

> summary(Haan.cor, variable="ROFF")

Var1 Var2 Cor Pval.holm Counts

1 ROFF PCIP 0.3865054 1.0000000 13

2 ROFF AREA 0.4708535 0.9393878 13

3 ROFF SLOPE 0.4091853 1.0000000 13

4 ROFF LEN 0.4210102 1.0000000 13

5 ROFF PERIM 0.4646590 0.9393878 13

6 ROFF DI 0.3343175 1.0000000 13

7 ROFF Rs -0.1532346 1.0000000 13

8 ROFF FREQ -0.3981606 1.0000000 13

9 ROFF Rr 0.3455404 1.0000000 13

The summary output shows the p-values adjusted for the signi�cance level in
the context of eight other variables. The p-values in the summary output have
changed considerably from the p-values in the �rst column in the printed
output.
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11 Bias Correction

Helsel and Hirsch (2002) state that the mass of a constituent estimated using a
log-transformed regression equation is not correctly estimated simply by
back-transforming the predicted values. They describe two methods for bias
correction, the Ferguson or maximum likelihood estimation method and
Duan's smearing estimate. These are implemented in smwrStats in the
predictFerguson and the predictDuan functions. Also included is the
preductMVUE fucntion which applies the minimum variance unbiased estimator
described in Bradu and Mundlak (1970). This example build a
log-transformed regression model and compares the sum of the estimates from
all of the methods.

> # Create the regression model and print it:

> TDS.lm <- lm(log(TDS) ~ log(Q) + fourier(TIME), data=CuyahogaTDS)

> print(TDS.lm)

Call:

lm(formula = log(TDS) ~ log(Q) + fourier(TIME), data = CuyahogaTDS)

Coefficients:

(Intercept) log(Q) fourier(TIME)sin(k=1)

7.99835 -0.29879 0.03962

fourier(TIME)cos(k=1)

0.06567

> # The sum of the TDS data in the calibration dataset:

> sum(CuyahogaTDS$TDS)

[1] 35720

> # The sum of the simple back-transformed predictions

> sum(exp(predict(TDS.lm)))

[1] 35308.69

> # No the sume from each of the bais-corrected methods

> sum(predictFerguson(TDS.lm))

[1] 35735.3

> sum(predictDuan(TDS.lm))
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[1] 35723.01

> sum(predictMVUE(TDS.lm))

[1] 35714.53

The back-transformation bias correction funcitons are necessary when the goal
is to preserve mass or the mean estimate is needed. The estimates from the
simple back-transformed values are valid for point estimates. Note that
predictFerguson and preductMVUE can only be used for log-transformed
regression model, but predictDuan can be used for any monotonic
transformation.
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