Package: smwrQW (via r-universe)

October 27, 2024

Version 0.7.14

Date 2017-07-24

Title Tools for censored data analysis

Depends dataRetrieval, smwrBase, smwrGraphs, smwrStats

Imports boot, coin, lubridate, methods, mvtnorm, survival, XML, zCompositions

Suggests smwrData, cluster, NADA, psych, knitr

Description This package provides tools for the analysis and graphing of censored data, focussing on water-quality data. It provides a uniform user interface to many different methods for the analysis.

License CC0

LazyLoad yes

LazyData yes

BugReports https://github.com/USGS-R/smwrQW/issues

Collate 'qw-class.R' 'lcens-class.R' 'mcens-class.R' 'Arith-censored.R' 'Compare-censored.R' 'Math-censored.R' 'View.r' 'add.R' 'as.character.R' 'as.data.frame.R' 'as.double.R' 'as.lcens.R' 'as.mcens.R' 'as.qw.R' 'atrazine.df.R' 'atrazine.dl.R' 'atrazine.spk.R' 'boxPlot.lcens.R' 'boxPlotCensStats.R' 'c.R' 'censCor.R' 'censKSample.test.R' 'censMean.CI.R' 'censMove.1.R' 'censMulticomp.test.R' 'censPPCC.test.R' 'censQtiles.CI.R' 'censQuantile.R' 'censReg.R' 'censReg.fit.R' 'censReg.pred.R' 'censStats.R' 'censSumStats.R' 'censoring.R' 'censorlevels.R' 'censpp.R' 'code01.R' 'codeU.R' 'coef.censReg.R' 'convert2qw.R' 'convertFqw.R' 'dlimit.R' 'dotPlot-censored.R' 'ecdfPlot.R' 'extractAIC.censReg.R' 'fillIn.R' 'fitted.censReg.R' 'format.R' 'gehanScores.R' 'genWilcox.test.R' 'importNWISqw.R' 'importQW.R' 'imputeLessThans.R' 'is.na.R' 'kendallATS.test.R' 'length.R' 'logLik.censReg.R' 'mImputeLessThans.R' 'makeColNames.R' 'mcenKM.R' 'mcenMLE.R' 'mcenROS.R' 'mdIAMLE.R' 'mdIKM.R' 'mdlKMstats.R' 'mdlMLE.R' 'mdlROS.R' 'mean.qw.R' 'meanStats.R' 'medianStats.R' 'multiply.R' 'nobs.censReg.R' 'pairedPratt.test.R' 'pcodeColData.R' 'pcodeNWISqw.R' 'pctCens.R' 'percentile.lcens.R' 'plot.censReg.R' 'plot.htest.R' 'plot.qw.R' 'plot.summary.censReg.R' 'pow.R' 'ppw.test.R' 'predict.censReg.R' 'print.censMCT.R' 'print.censQuantile.R' 'print.censReg.R' 'print.censStats.R' 'print.summary.censReg.R' 'printData.R' 'probPlot.R' 'qqPlot.R' 'quantile.R' 'qw2mcens.R' 'qwCoalesce.R' 'qwRPD.R' 'ratio.R' 'rbindQW.R' 'readNWQLdl.R' 'residuals.censReg.R' 'rmse.censReg.R' 'sdlFill.R' 'show-censored.R' 'smwrQW-package.R' 'sort.censored.R' 'splitQual.R' 'str.R' 'subset.R' 'summary.R' 'summary.censReg.R' 'timePlot-censored.R' 'vcov.censReg.R' 'vif.censReg.R' 'xyPlot-censored.R' 'z%eq%.R'

RoxygenNote 6.0.1

Repository https://ldecicco-usgs.r-universe.dev

RemoteUrl https://github.com/USGS-R/smwrQW

RemoteRef HEAD

RemoteSha 7f9d3f24c9ec072da5dba9f3f3ad19b0c394854d

Contents

smwrQW-package	5
add	5
Arith-censored	6
as.character.lcens	7
as.data.frame.lcens	8
as.double.qw	9
as.lcens	10
as.mcens	11
as.qw	13
atrazine.df	15
atrazine.dl	17
atrazine.spk	18
boxPlot.lcens	19
boxPlotCensStats	21
c.lcens	21
censCor	22
censKSample.test	24
censMean.CI	25
censMove.1	27
censMulticomp.test	28
censor	29
censoring	30

Contents

censorLevels	31
censpp	32
censPPCC.test	34
censQtiles.CI	35
censQuantile	
censReg	
censReg_AMLE.fit	
censReg_AMLE.pred	
censStats	
censSumStats	
code01	
codeU	
coef.censReg	
Compare-censored	
convert2qw	
convertFqw	
dlimit	
dotPlot-censored	
ecdfPlot.lcens	
extractAIC.censReg	
fillIn	
fitted.censReg	
format.lcens	
gehanScores	
genWilcox.test	
importNWISqw	
importQW	
imputeLessThans	
is.na.lcens	
kendallATS.test	
lcens-class	
length.lcens	
logLik.censReg	
makeColNames	
Math-censored	
mcenKM	
mcenMLE	
mcenROS	
mcens-class	
mdlAMLE	
mdIAMLE	
mdlKMstats	
mdlMLE	
mdlROS	
mean.lcens	
mean.qw	
median.lcens	
mImputeLessThans	79

3

multiply	80
nobs.censReg	
pairedPratt.test	81
pcodeColData	83
pcodeNWISqw	
pctCens	85
percentile.lcens	86
plot.censReg	
plot.ppw	
plot.qw	89
plot.summary.censReg	89
pow	91
ppw.test	91
predict.censReg	
print.censMCT	
print.censQuantile	
print.censReg	
print.censStats	
print.lcens	
print.summary.censReg	
probPlot.lcens	
qqPlot.lcens	
quantile.lcens	
qw-class	
qw2mcens	
gwCoalesce	
gwRPD	
ratio	
rbindQW	
readNWQLdl	
residuals.censReg	
rmse.censReg	
sdlFill	
show-censored	
sort.lcens	
splitQual	
str.lcens	
summary.censReg	
summary.lcens	
timePlot-censored	
vcov.censReg	
View	
vif.censReg	
xyPlot-censored	
[.lcens	
%~=%	122

Index

smwrQW-package

Description

A collection of tools for the analysis of left- and multiply-censored data that focuses on the analysis of water-quality data.

Details

Package:	smwrQW
Type:	Package
License:	CC0
Depends:	dataRetrieval smwrBase smwrGraphs smwrStats
Imports:	boot coin lubridate methods mytnorm survival XML zCompositions
Suggests:	smwrData cluster NADA psych

Modern water-quality information requires much more that a value and remark code to characterize the data. The tools in this library focus on the "qw" class, which store the value and the remark code, but also information about the reporting level, the units, the methods of analysis analysis, and the analyte itself.

Some specialized analytical tools for left-only censored data, requiring objects of class "lcens" have been developed and are included in this library. Other analytical tools for multiply- or any censored data are alos included. The tools include automatic conversion of "qw" data into the "best" (left-only or multiply censored) format.

Need a general description of the tools by group-a brief synopsis of the OFR.

References

Lorenz, D.L., in preparation.

add

Add Water-Quality Data

Description

Adds or subtracts water-quality data while trying to maintain the integrity of the data.

Usage

add(..., analyte, pcode = "", gt0 = TRUE)

	any number of water-quality (class "qw") or numeric vectors. The length of the water-quality data must all agree, but numeric values are replicated to the length of the water-quality data. See Details .
analyte	the name of the analyte, if not supplied, generated from
pcode	the parameter code of the analyte or any othe unique identifier the user chooses.
gt0	logical, if TRUE, then force values to be strictly non-negative on subtraction, otherwise negative values are permitted.

Details

The ... arguments must not be named in the call. Only objects of class "qw" or "numeric" are allowed. To perform a subtraction, simply precede the argument with the unary - sign in the call. The first argument must be a positive valued object of class "qw."

Value

An object of class "qw" that is the result of the requested operations.

Arith-censored Arithmetic Methods for lcens, mcens, and qw objects

Description

Some limited arithmetic methods are possible and well-defined for censored data. Water-quality data require specialized functions to maintain data integrity.

Usage

```
## S4 method for signature 'lcens,numeric'
Arith(e1, e2)
## S4 method for signature 'numeric,lcens'
Arith(e1, e2)
## S4 method for signature 'lcens,lcens'
Arith(e1, e2)
## S4 method for signature 'mcens,numeric'
Arith(e1, e2)
## S4 method for signature 'numeric,mcens'
Arith(e1, e2)
## S4 method for signature 'mcens,mcens'
Arith(e1, e2)
```

```
## S4 method for signature 'qw,numeric'
Arith(e1, e2)
## S4 method for signature 'numeric,qw'
Arith(e1, e2)
## S4 method for signature 'qw,qw'
Arith(e1, e2)
```

e1, e2	numeric, censored, or water-quality data. Missing values are permitted in either
	argument and result in a missing value in the output.

Value

An object of the appropriate class for the data.

See Also

add, ratio

Examples

as.lcens(c(1, 3), 2) + 1 as.lcens(c(1, 3), 2) * 2

as.character.lcens Character Representations

Description

Creates character representations of censored and water-quality data: methods for "lcens," "mcens," and "qw" data.

Usage

```
## S3 method for class 'lcens'
as.character(x, ...)
## S3 method for class 'mcens'
as.character(x, ...)
## S3 method for class 'qw'
as.character(x, ...)
```

х	any R object to coerce to character
•••	further arguments passed to or from other methods.

Value

Creates a character representation of x.

as.data.frame.lcens Coerce to a Data Frame

Description

Creates data frames from censored and water-quality data: methods for "lcens," "mcens," and "qw" data.

Usage

```
## S3 method for class 'lcens'
as.data.frame(x, row.names = NULL, optional = FALSE, ...,
nm = deparse(substitute(x)))
## S3 method for class 'mcens'
as.data.frame(x, row.names = NULL, optional = FALSE, ...,
nm = deparse(substitute(x)))
## S3 method for class 'qw'
as.data.frame(x, row.names = NULL, optional = FALSE, ...,
nm = deparse(substitute(x)), expand = FALSE)
```

Arguments

Х	any R object to put into a data frame.
row.names	NULL or a character vector giving the row names for the data frame. Missing values are not allowed.
optional	logical. If TRUE, set column names to nm.
	additional arguments to be passed to or from methods.
nm	set as column name if optional is TRUE.
expand	create a data frame from all of the slots from the object instead of creating a data frame containting the object.

Value

A data frame constructred from x.

See Also

data.frame

as.double.qw

Description

Converts data to numeric values: method for "qw" data.

Usage

S3 method for class 'qw'
as.double(x, ...)

Arguments

х	the object to be converted.
	further arguments passed to or from other methods.

Value

A numeric representation of x, using a method commonly refered to as simple substitution.

Note

The process of simple substitution proceeds in 4 steps for each kind of censoring: none, interval, left and right. First uncensored data are retained as is. Interval-censored data are converted by computing the mid rnge. Left-censored data are converted sequentially from the lowest censoring level, which is set to 1/2 the reporting level, any subsequent levels are replaced by the mean of all values less than the current reporting level. Conversion of right-censored data are not implemented in the current version and result in an error.

The function as.double is executed for as.numeric.

See Also

fillIn

Examples

```
## Create a simple qw object
Test.qw <- as.qw(c(1,2,3,2,4,4), c("<", "<", "<", " ", " ", " "), "", NA_real_,
"Miss", "None", "Mine", "TEST", "")
as.double(Test.qw)
as.numeric(Test.qw)</pre>
```

as.lcens

Description

Converts data to a left-censored data (lcens) object: various methods.

Usage

as.lcens(values, detlim, censor.codes) ## S4 method for signature 'lcens,missing,missing' as.lcens(values, detlim, censor.codes) ## S4 method for signature 'numeric, missing, missing' as.lcens(values, detlim, censor.codes) ## S4 method for signature 'numeric,numeric,missing' as.lcens(values, detlim, censor.codes) ## S4 method for signature 'numeric,numeric,logical' as.lcens(values, detlim, censor.codes) ## S4 method for signature 'numeric, numeric, character' as.lcens(values, detlim, censor.codes) ## S4 method for signature 'numeric,missing,logical' as.lcens(values, detlim, censor.codes) ## S4 method for signature 'numeric,missing,character' as.lcens(values, detlim, censor.codes) ## S4 method for signature 'qw,missing,missing' as.lcens(values, detlim, censor.codes) ## S4 method for signature 'qw, numeric, missing' as.lcens(values, detlim, censor.codes) ## S4 method for signature 'character,missing,missing' as.lcens(values, detlim, censor.codes)

Arguments

values numeric values representing "raw" values. Missing values are permitted. A vector of character strings is allowed when the remark code is combined with the value; blank values are treated as missing values, any other value is converted to a missing value with a warning. See **Examples**.

as.mcens

detlim	the corresponding detection limit of the sensor. Missing values are permitted. Detection limits are required for each non-missing value in values; they will be imputed if missing. The imputation scheme is fairly sophisticated, see Lorenz (in preparation) for details, so it is better to set to missing, rather than provide an arbitrary detection limit.
censor.codes	optional codes indicating a left-censored value. If class "logical," then TRUE indicates left-censored. If class "character," then "<" indicates left-censored and anything other than "" or " " generates a warning.

Value

An S4 object of class "lcens." These objects are the basis for the analysis of left-censored data.

Note

All methods force values to be no less than the corresponding detlim. All values that are less than detlim are treated as left-censored values at detlim. This ensures unbiased analytical results.

References

Lorenz, D.L., in preparation

See Also

as.mcens

Examples

```
## The first value is censored at 2
as.lcens(c(1,3), 2)
## Set the first value to censored at that level and the detection limit is
# carried forward
as.lcens(c(1,3), censor.codes=c("<", ""))
# For combined remark and values:
as.lcens(c("<1", "1", "<1", "1", "2"))</pre>
```

as.mcens

Multiply-censored Data Conversion

Description

Converts data to a multiply-censored data (mcens) object: various methods.

as.mcens

Usage

as.mcens(lower.val, upper.val, censor.codes) ## S4 method for signature 'mcens,missing,missing' as.mcens(lower.val, upper.val, censor.codes) ## S4 method for signature 'lcens,missing,missing' as.mcens(lower.val, upper.val, censor.codes) ## S4 method for signature 'numeric,missing,missing' as.mcens(lower.val, upper.val, censor.codes) ## S4 method for signature 'numeric,numeric,missing' as.mcens(lower.val, upper.val, censor.codes) ## S4 method for signature 'numeric,missing,numeric' as.mcens(lower.val, upper.val, censor.codes) ## S4 method for signature 'numeric,missing,integer' as.mcens(lower.val, upper.val, censor.codes) ## S4 method for signature 'numeric,missing,character' as.mcens(lower.val, upper.val, censor.codes) ## S4 method for signature 'qw,missing,missing' as.mcens(lower.val, upper.val, censor.codes) ## S4 method for signature 'character,missing,missing' as.mcens(lower.val, upper.val,

censor.codes)

Arguments

lower.val	The lower limit of the actual value, the special value of -Inf or NA can be used to indicate left-censoring. A vector of character strings is allowed when the remark code is combined with the value; blank values are treated as missing values, any other value is converted to a missing value with a warning. See Examples .
upper.val	The upper limit of the actual value, the special value of Inf or NA can be used to indicate right-censoring.
censor.codes	optional codes if upper.val is missing. Any numeric value less than 0 indicates left-censored, any value greater than 0 indicates right-censored, and 0 indicates an observed value. The character value "<" indicates left-censored, ">" indicates right-censored, any anything else indicates an observed value.

as.qw

Details

In keeping with the logic of Surv, NA is permitted to indicate left- or right-censored data. If both are NA, then the observation is treated as missing.

Value

An S4 object of class "mcens." These objects are the basis for the analysis of censored data that are not strictly left censored.

References

Lorenz, D.L., in preparation

See Also

Surv

Examples

```
## Create one of each type of censoring, including uncensored
# the last value is missing
as.mcens(c(-Inf, 2, 2, 5, NA), c(1, 2, 3, Inf, NA))
# For combined remark and values:
as.mcens(c("<1", "1", ">3", "1", "2"))
```

as.qw

Water-quality Data Conversion

Description

Converts data and meta data to a water-quality data (qw) object: various methods.

Usage

```
as.qw(values, remark.codes, value.codes, reporting.level, reporting.method,
reporting.units, analyte.method, analyte.name, unique.code, value2)
```

```
## S4 method for signature
## 'numeric,
##
     character,
##
     character,
##
     numeric,
##
     character,
##
     character,
##
     character,
##
     character,
##
     character,
```

```
## missing'
as.qw(values,
 remark.codes, value.codes, reporting.level, reporting.method, reporting.units,
 analyte.method, analyte.name, unique.code, value2)
 ## S4 method for signature
## 'numeric,
##
    character,
##
   character,
##
   numeric,
##
     character,
##
    character,
##
   character,
##
   character,
##
    character,
##
    numeric'
as.qw(values,
 remark.codes, value.codes, reporting.level, reporting.method, reporting.units,
 analyte.method, analyte.name, unique.code, value2)
```

values	the uncensored values and optionally the censored values.
remark.codes	the remarks codes: " " or "" indicated uncensored, "<" indicates left-censoring, ">" indicates right censoring. The special remark code "M" is created when the value is rounded to 0 by NWIS. In this case, the value is set to less than the reporting level if the reporting level is not the missing value NA, otherwise the value is set to missing NA and "M" is retained as the remark code. Other codes have a special meaning that can be modified by value.codes.
value.codes	special value qualifier codes. See Lorenz and others, 2014 for a description of these codes and the special remark.codes.
reporting.level	
	the reporting level associated with each value. Note that if the reporting level is not known, then NA_real_ should be used instead of using any arbitrary value.
reporting.metho	d
	the method used to compute the reporting level. These can be arbitrary codes, known only to the user.
reporting.units	
	the reporting units. A few defined units such as "mg/l" are recognized and used by the software.
analyte.method	the method used to compute the concentration. These can be arbitrary codes, known only to the user.
analyte.name	the name of the analyte. A few names are recongnized such as "chloride" and used by the software.
unique.code	an arbitrary code identifying unique instances of data. For data retreived from the US Geological Survey, this should be the 5-digit parameter code.

14

atrazine.df

value2 for interval censored data, the upper value.

Details

Two methods for constructing water-quality data are defined in the current version. The first method works well for un-, left-, and right-censored data where the remark code and value can completely define the numeric values. The second method works for any censored data, including interval-censored data, where an upper and lower range of values are required. For the second method, values is the lower limit of the range and for left-censored data, may be either -Inf, NA, or 0. If -Inf, then the value is treated as strictly left-censored, otherwise, the lower limit is set to 0, which corresponds to the traditional interpretation of left-censored water-quality data. For the second method, value2 is the upper limit and for right-censored data will always be set to Inf.

Value

An object of class "qw" that contains the numeric data in a two-column matrix and the meta data as additional slot information.

Note

The class "qw" is intended to be a flexible and user-friendly way to store and manage water-quality data. The meta data that are stored with the numeric and remark data are essential for unbiased statistical analysis and for reducing other errors in interpretation or computation.

Objects of class "qw" also have a slot named "rounding" that controls how the data are roudend when printed. That slot is an integer vector of length 2, the first element is the maximum number of significant figures and the second is the maximum number of decimal places to show. The default value used by as . qw is c(2L,3L). It can be changed by specifically modifying the slot value.

References

Lorenz, D.L., in preparation

See Also

importNWISqw

atrazine.df Atrazine Data A dataset of atrazine samples, replicates, and blanks collected by the U.S. Geological Survey from October 1, 2001 through September 30, 2012.

Description

Atrazine Data A dataset of atrazine samples, replicates, and blanks collected by the U.S. Geological Survey from October 1, 2001 through September 30, 2012.

Usage

atrazine.df

Format

Data frame with 13106 rows and 12 columns

Name	Type	Description
staid	character	USGS station number
Date	Date	Sample date
MEDIUM_CD	character	Sample medium code, see Details
SAMP_TYPE_CD	integer	Sample type code, see Details
sched	character	Lab schedule
RESULT_VA	numeric	Numeric value of the concentration
REMARK_CD	character	Remark code for the value
RPT_LEV_VA	numeric	Reporting level
RPT_LEV_CD	character	Reporting level code
Units	character	Units of the concentration
	•1141 40 001	1 0

Details

The sample medium codes are regular water-quality sample, WS; replicate water-quality sample, WSQ; and field blank, OAQ. The sample type codes are regular sample with no QAQC sample, 9; regular sample with QAQC or the replicate sample, 7; and field blank , 2.

Source

Data retreived from the national water information system and processed by Jeffery Martin and Laura Medalie of the U.S. Geological Survey.

Examples

```
data(atrazine.df)
# How many different kinds of samples?
with(atrazine.df, table(MEDIUM_CD))
# Now many stations?
with(atrazine.df, table(staid))
```

atrazine.dl

Atrazine Reporting Data A dataset of the reporting and detection levels for atrazine from the U.S. Geological Survey National Water Quality Lab.

Description

Atrazine Reporting Data A dataset of the reporting and detection levels for atrazine from the U.S. Geological Survey National Water Quality Lab.

Usage

atrazine.dl

Format

Data frame with 23 rows and 9 columns

Name	Туре	Description
ConstituentName	character	Name of the constituent
TestID	character	Parameter code and method
LabCode	character	Lab code for method
StartDate	Date	Start date for the reporting and detection levels
EndDate	Date	End date for the reporting and detection levels
ReportLevelCode	character	Reporting level code
DetectionLevel	numeric	Detection level
ReportingLevel	numeric	Reporting level
Units	character	Units of the concentration

Source

Data retrieved from the U.S. Geological Survey National Water Quality Lab reporting level database on January 4, 2016.

Examples

```
data(atrazine.dl)
# What methods; 39632 is the parameter code for atrazine
with(atrazine.dl, unique(TestID))
```

atrazine.spk

atrazine.spk

Atrazine Spike Data A dataset of atrazine environmental and spike samples collected by the U.S. Geological Survey from October 1, 2001 through September 30, 2012.

Description

Atrazine Spike Data A dataset of atrazine environmental and spike samples collected by the U.S. Geological Survey from October 1, 2001 through September 30, 2012.

Usage

atrazine.spk

Format

Data frame with 596 rows and 22 columns

Name	Туре	Description
pstaid	character	Not sure why we need this
suid	character	Study Unit Identifier, see Details
Date	Date	Date of sample
PARAMETER_CD	character	Parameter code
PARAMETER_NM	character	Parameter name
spkTime	character	Time of spike sample
spkMEDIUM_CD	character	Spike sample medium code
spkREMARK_CD	character	Spike sample remark code for value
spkRESULT_VA	numeric	Spike sample result value
spkSched	character	Spike sample schedule code
envTime	character	Time of environmental sample
envMEDIUM_CD	character	Environmental sample medium code
envREMARK_CD	character	Environmental sample remark code for value
envRESULT_VA	numeric	Environmental sample result value
envSched	character	Environmental sample schedule code
spkLotNo	numeric	Spike sample lot number
spkConc	numeric	Spike sample concentration
spkVol	numeric	Spike sample volume
envVol	numeric	Environmental sample volume
Recovery	numeric	Spike recovery, in percent
sname	character	USGS station name
staid	character	USGS station number

Details

A map of the study units can be found at https://water.usgs.gov/nawqa/nawqamap.html. Some of the study unit codes represent combined study units from that map.

boxPlot.lcens

Source

Data retreived from the national water information system and processed by Jeffery Martin of the U.S. Geological Survey.

Examples

```
data(atrazine.spk)
# The mean spike recovery
mean(atrazine.spk$Recovery)
```

boxPlot.lcens Box Plot

Description

Produces an estimated or censored style box plot for truncated, Tukey, simple, or extended type box plot: methods for "lcens" and "qw" data. The Tukey type box plot requires an estimated style box plot.

Usage

```
## S3 method for class 'lcens'
boxPlot(..., group = NULL, Box = list(type = "truncated",
 show.counts = TRUE, censorbox = NA, censorstyle = "censored", nobox = 5, width
  = "Auto", fill = "none", truncated = c(10, 90)), yaxis.log = TRUE,
 yaxis.range = c(NA, NA), ylabels = "Auto", xlabels = "Auto",
 xlabels.rotate = FALSE, xtitle = "", ytitle = "", caption = ""
 margin = c(NA, NA, NA, NA)
## S3 method for class 'qw'
boxPlot(..., group = NULL, Box = list(type = "truncated",
 show.counts = TRUE, censorbox = NA, censorstyle = "censored", nobox = 5, width
 = "Auto", fill = "none", truncated = c(10, 90)), yaxis.log = TRUE,
 yaxis.range = c(NA, NA), ylabels = "Auto", xlabels = "Auto",
 xlabels.rotate = FALSE, xtitle = "", ytitle = "", caption = ""
 margin = c(NA, NA, NA, NA)
## S3 method for class 'data.frame'
boxPlot(..., group = NULL, Box = list(type =
  "truncated", show.counts = TRUE, censorbox = NA, censorstyle = "censored",
  nobox = 5, width = "Auto", fill = "none", truncated = c(10, 90)),
 yaxis.log = FALSE, yaxis.range = c(NA, NA), ylabels = "Auto",
  xlabels = "Auto", xlabels.rotate = FALSE, xtitle = "", ytitle = "",
  caption = "", margin = c(NA, NA, NA, NA))
```

	the data to plot.
group	create groups of a single left-censored data vector. Invalid for anything else
Box	control parameters for the box. See boxPlot
yaxis.log	logical: log transform y axis?
yaxis.range	set y-axis range.
ylabels	set up y-axis labels. See linearPretty for details.
xlabels	set up x-axis labels.
xlabels.rotate	rotate x-axis labels 90 degrees?
xtitle	the x-axis title.
ytitle	the y-axis title.
caption	the figure caption.
margin	set up the plot area margins.

Details

If group is numeric, then the boxes will be plotted along a continuous numeric axis. Otherwise the x-axis will be discrete groups.

Value

Information about the graph.

Note

The censored style box plot truncates the boxplot at the largest value of the reporting level. The estimated style box plot estimates values for left-censored data and uses those estimates to construct the full boxplot; the range of estimated values is shown in gray. The maximum reporting level, except for some simple heuristics for identifying elevated reporting levels, is used for the censoring level when there are multiple reporting levels.

The fillIn function is used to estimate values that are censored. If yaxis.log is TRUE, then the "log ROS" method is used to estimate those values, otherwise, the "ROS" method is used. Occasionally, estimated values by fillIn will estimate values for censored data that are greater than the censoring level. In those cases, a red bar is drawn on the box plot at the largest estimated value.

The default method for data frames in smwrGraphs is replaced with a method that supports data frames that contain columns of class "qw" or "lcens."

See Also

fillIn

boxPlotCensStats

Examples

```
## Not run:
set.seed(1932)
Xu <- rlnorm(32)
setPage("sq") # required page set up
boxPlot(as.lcens(Xu, 1.0))
```

End(Not run)

boxPlotCensStats Not exported

Description

Computes the statistics for a left-censored data boxplot.

Usage

```
boxPlotCensStats(x, Box, yaxis.log)
```

Arguments

х	list of the lcens data
Box	the Box parameters
yaxis.log	is it?

Value

Info to actually plot the boxplot.

c.lcens

Combine Values into a Vector

Description

Combines arguments to form a vector for censored or water-quality data: methods for "cens," "mcens," and "qw" data. All arguments are coerced to a common type which is the type of the first argument, except for the qw method,

Usage

```
## S3 method for class 'lcens'
c(..., recursive = FALSE)
## S3 method for class 'mcens'
c(..., recursive = FALSE)
## S3 method for class 'qw'
c(..., recursive = FALSE)
```

Arguments

•••	any objects that can be coerced to the class of the first one.
recursive	not used.

Value

A vector of an appropriate class.

Examples

c(as.lcens(c(1,3), 2), 2)

|--|

Description

Computes the maximum likelihood estimate of the correlation between two possibly left-censored vectors. It is equivalent the the Pearson product-moment correlation for uncensored data.

Usage

censCor(x, y, Full = TRUE, na.rm = TRUE)

Arguments

Х	any data that can be converted to a left-censored data object.
У	any data that can be converted to a left-censored data object.
Full	how to compute the mean and standard deviation of x and y. See Details .
na.rm	logical, remove missing values before computing the correlation?

22

censCor

Details

Full may be either logical or a numeric vector. If Full is TRUE, then estimate the means and standard deviations for x and y. If Full is FALSE, use the initial maximum likelihood estimate for those statistics. Otherwise Full can be a named vector containing mnx, the mean for x; sdx, the standard deviation for x; mny, the mean for y; sdy, the standard deviation for y. Full can be set to FALSE if the optimization fails at large censoring levels or to improve processing speed for large sample sizes.

Value

A vector with these names:

cor	the correlation between x and y.
mnx	the mean of x.
sdx	the standard deviation of x.
mny	the mean of y.
sdy	the standard deviation of y.
сх	the proportion of censored values of x.
су	the proportion of censored values of y.
сху	the proportion of censored values common to \boldsymbol{x} and $\boldsymbol{y}.$
n	the number of observations.
110	the log likelihood for cor=0
llcor	the log likelihood for cor=cor

References

Lyles, R.H., Williams, J.K., and Chuachoowong R., 2001, Correlating two viral load assays with known detection limits: Biometrics, v. 57 no. 4, p. 1238–1244.

Examples

```
# Simple no censoring
set.seed(450)
tmp.X <- rnorm(25)
tmp.Y <- tmp.X/2 + rnorm(25)
cor(tmp.X, tmp.Y)
censCor(tmp.X, tmp.Y)
# Some censoring
censCor(as.lcens(tmp.X, -1), as.lcens(tmp.Y, -1))</pre>
```

censKSample.test Test for difference in left-censored samples

Description

Performs a test for differences in left-censored samples from 2 or more groups.

Usage

censKSample.test(x, groups, type = "Peto", data.names)

Arguments

х	the samples from each group. Forced to class "lcens." Missing values are re- moved before the analysis.
groups	the group identifier for each sample. Missing values are removed before the analysis.
type	the string "Peto" or "log-rank," depending on the desired type of test. Default is "Peto."
data.names	character string to be used to explain the data. Default names are derived from the data arguments.

Value

An object of class "htest."

Null Hypothesis

The null hypothesis is that the distributions in each group are not different from one another.

Note

The censKSample.test function use the survdiff function to test for differences. Helsel (2012) describes flipping the left-censored data so that small values become large and left-censored values become right-censored values and adapt nonparametric techniques from survival analysis.

Tableman and others (2004) state, "the Peto test emphasizes the beginning of the survival curve in that earlier failures receive larger weights. The log-rank test emphasizes the tail of the survival curve in that it gives equal weight to each failure." For flipped data, earlier failures translates to larger uncensored values. In general, the Peto test gives results that are more similar to the Wilcoxon test if all data are uncensored.

censMean.CI

References

Helsel, D.R. 2012, Statistics for censored environmental data using Minitab and R: New York, Wiley, 324 p.

Peto, R., and Peto, J., 1972, Asymptotically efficient rank invariant test procedures (with discussion): Journal of the Royal Statistical Society, Series A v. 135, p. 185-206.

Prentice, R.L. 1978, Linear rank tests with right-censored data: Biometika, v 65, p 167-179.

Prentice, R.L., and Marke, P., 1979, A qualitative discrepancy between censored data rank tests: Biometrika, v. 35, p. 861-867.

Tableman, M., and Kim, J.S., 2004, Survival analysis using S—analysis of time-to-event data: Boca Raton, Fla., Chapman and Hall, 280 p.

See Also

survdiff, lcens-class

Examples

```
# Compare uncensored results
set.seed(69)
Xu <- rlnorm(22, 0, 1)
Yu <- rlnorm(22, .4, 1)
Zu <- rlnorm(22, 1, 1)
Gu <- factor(rep(c("X", "Y", "Z"), each=22))
censKSample.test(c(Xu, Yu, Zu), Gu)
kruskal.test(c(Xu, Yu, Zu), Gu)
# Censor the data at 1
censKSample.test(as.lcens(c(Xu, Yu, Zu), 1), Gu)</pre>
```

censMean.CI Mean with Confidence Limits

Description

Computes the mean and confidence limits of left-censored data.

Usage

```
censMean.CI(x, method = "log AMLE", CI = 0.9, bound = c("two.sided",
    "upper", "lower"), alpha = 0.4)
```

x	any R object than can be converted to class "lcens," or "mcens" for multiply cen- sored data, to compute the mean. Missing values are permitted and are removed before computing the mean.
method	the method to use for computing the statistics. See Details .
CI	the minimum desired confidence interval for each level specifed in probs.
bound	a character string indicating the desired bounds, "two.sided" means the two- sided interval, "upper" means the upper bound of the interval, and "lower" means the lower bound of the interval. Only a single character is needed. The lower confidence limit is -Inf or 0 when bound is "upper" and the upper confidence limit is Inf when bound is "lower."
alpha	the offset fraction to be used, depending on method; typically in [0,1].

Details

The methods available in the current version are "log MLE," "MLE," "log ROS," "ROS," "log AMLE," and "AMLE." The methods "log ROS," "log MLE," and "log AMLE" are described by Helsel (2012) and Helsel and Cohn (1988). The methods "ROS," "MLE," and "AMLE" are similar to the previous except that no log- and back-transforms are made on the data. For "log" methods, if any value in x is negative, then a warning is generated and the returned value contains missing values.

Value

A matrix of the mean, the lower confidence limit, the upper confidence limit, and the probability represented by the confidence interval.

Note

Helsel (2012) describes computing the confidence interval for the mean of normally dsitributed data in Sections 7.4.1 and 7.4.2; those approaches are used for method "MLE" and "AMLE." Helsel (2012) describes computing the confidence interval for the mean of lognormally dsitributed data in Sections 7.5.1 and 7.5.2; those approaches are used for method "log MLE" and "log AMLE." Helsel (2012) describes bootstrapping the confidence interval for the mean when method is "ROS" or "log ROS" in Section 7.6. For this function, the number of replicates is set to a value to guarantee at least 50 replicate values lie outside of the requested confidence interval. The percentage type confidence interval is reported.

References

Helsel, D.R. 2012, Statistics for censored environmental data using Minitab and R: New York, Wiley, 324 p.

See Also

censStats

censMove.1

Examples

```
## Generate a random lognormal sample
set.seed(221)
XX.rn <- rlnorm(30)
# Compare log AMLE and log ROS
censMean.CI(XX.rn, method="log AMLE", CI=.80)
censMean.CI(XX.rn, method="log ROS", CI=.80)
# check upper bound for AMLE
censMean.CI(XX.rn, method="log AMLE", CI=.90, bound="upper")</pre>
```

censMove.1

Censored Maintenance of Variance Extension, Type 1

Description

Calculates the Maintenance Of Variance Extension, Type 1 (MOVE.1) for record extension by fitting a Line of Organic Correlation (LOC) regression model to left-censored data.

Usage

censMove.1(formula, data, subset, na.action, distribution = "normal")

Arguments

formula	a formula with a single response variable on the left and a single explanatory variable on the right. See Details .
data	the data to search for the variables in formula.
subset	an expression to select a subset of the data.
na.action	what to do with missing values.
distribution	the distribution of the data, either "normal," "lognormal," or "commonlog." See Details .

Details

The left- or right-hand side of the formula may be any numeric variable, just as with move.1 or a variable of class "lcens." The response variable must be the name of a column and not converted using as.lcens in the call.

If distribution is "normal," then the data in x and y are assumed to have a bivariate normal distribution. Otherwise, they are assumed to have a bivariate log-normal distribution and a logarithmic transform is applied to both x and y before analysis. The natural logarithm is used if distribution is "lognormal" and the common logarithm is used if distribution is "commonlog."

Value

An object of class "move.1" as decribed in the documentation for move.1. Except, there are no fitted.values or residuals components, the values of x and y include estimated values (See **Note**), and components cx and cy, which indicate left-censoring are included.

Because predictions are made using the predict method for class "move.1," and do not expect censored values, the explanatory variable in formula must refer to a column in data and not converted using the as.lcens function; the user must convert the explanatory variable column to class "lcens" before using censMove.1.

The components x and y are the actual values if the data are uncensored. If y is censored and x is not censored, then y is the expected value of y, given its censored value and the value of x and likewise for x censored and y not censored. If both are cessored, then the values are computed from their expected values given the censored value without respect to any condition of the other.

References

will need some.

See Also

move.1

Examples

```
## Not run:
library(smwrData)
data(IonBalance)
# Build model for non missing Alkalinity
move.1(Anion_sum ~ Cation_sum, data=IonBalance,
subset=abs(Pct_Diff) < 10)
# Compare to censored
censMove.1(Anion_sum ~ Cation_sum, data=IonBalance,
subset=abs(Pct_Diff) < 10)
# The difference in standard deviations is due to using sd/MLE
## End(Not run)
```

censMulticomp.test Multiple Comparisons

Description

Performs a multiple nonparametric comparison test among groups of left-censored data.

Usage

```
censMulticomp.test(x, groups, method = "holm", alpha = 0.05)
```

28

Note

censor

Arguments

x	the observations the data are forced to class "lcens." Missing values (NAs) are allowed and removed before the test is performed.
groups	any group vector for the observations. Missing values (NAs) are allowed and removed before the test is performed.
method	the method for adjustment of p-value. See p.adjust for options and details.
alpha	the significance level of the test.

Value

An object of class "censMCT."

Note

need some kind of general description.

References

Helsel, D.R. 2012, Statistics for censored environmental data using Minitab and R: New York, Wiley, 324 p.

See Also

censKSample.test

Examples

```
set.seed(69)
Xu <- rlnorm(22, 0, 1)
Yu <- rlnorm(22, .4, 1)
Zu <- rlnorm(22, 1, 1)
Gu <- factor(rep(c("X", "Y", "Z"), each=22))
# Censor the data at 1
censKSample.test(as.lcens(c(Xu, Yu, Zu), 1), Gu)
censMulticomp.test(as.lcens(c(Xu, Yu, Zu), 1), Gu)</pre>
```

censor

Multiply-censored Data Conversion

Description

Censors a vector at user-set limits for left- or right-censoring.

Usage

censor(x, left = -Inf, right = Inf)

х	a numeric vector. Missing values are permitted.
left	a vector of left-censoring thresholds. If the length is greater than 1, then they are replicated to the length of x .
right	a vector of right-censoring thresholds. If the length is greater than 1, then they are replicated to the length of x .

Value

An S4 object of class "lcens" if right is Inf, otherwise an S4 object of class "mcens."

Note

Missing velues are generated wherever right is less than or equal to left. The censor function is provided as a simple function to create either left- or multiply-censored data from numeric values, primarily for simulation pruposes. The functions as.lcens or as.mcens offer greater flexibility and should be used for real data.

References

Lorenz, D.L., in preparation

See Also

as.lcens, as.mcens

Examples

```
## Create a random vector
set.seed(651)
x.tmp <- rnorm(5)
censor(x.tmp, 0, .75)
```

censoring

Describe Censoring

Description

Returns the type of censoring ("none," "left," "multiple") for an object.

censorLevels

Usage

```
censoring(x)
## Default S3 method:
censoring(x)
## S3 method for class 'lcens'
censoring(x)
## S3 method for class 'mcens'
censoring(x)
## S3 method for class 'qw'
censoring(x)
```

Arguments

х

the object to get the type of censoring.

Value

A character string "none," "left," or "multiple" describing the type of censoring present in the object.

Note

This function is mostly used within other functions to determine the 'best' technique to use for analysis.

See Also

censorLevels

Examples

```
censoring(2.3) # a simple number
censoring(as.lcens(1, 2)) # left-censored
```

censorLevels

Describe Censoring

Description

Returns all censoring levels for an object.

Usage

```
censorLevels(x, type = "left")
## Default S3 method:
censorLevels(x, type = "left")
## S3 method for class 'lcens'
censorLevels(x, type = "left")
## S3 method for class 'mcens'
censorLevels(x, type = "left")
## S3 method for class 'qw'
censorLevels(x, type = "left")
```

Arguments

х	the object to get the levels of censoring.
type	a character string indicating the type of censoring levels, must be either "left" or "right."

Value

A numeric vector of the sorted censoring levels. If all data are uncensored, then -Inf is returned for type = "left" and Inf is returned for type = "right."

Note

Interval censoring is not characterized by a single value, so it is not an option for type.

See Also

censoring

Examples

```
censorLevels(2.3) # a simple number
censorLevels(as.lcens(1, 2)) # left-censored
```

censpp

Probability Plotting Positions

Description

Generates the sequence of probability points for uncensored and censored values

censpp

Usage

```
censpp(x, a = 0.44)
## Default S3 method:
censpp(x, a = 0.44)
## S3 method for class 'lcens'
censpp(x, a = 0.44)
## S3 method for class 'mcens'
censpp(x, a = 0.44)
```

Arguments

х	a vector of observations
а	the offset fraction to be used; typically in $[0, 0.5]$.

Value

A list with these components:

Note that xrcn and pprcn are provided only if there are right-censored values.

x	sorted uncensored observations.
рр	corresponding plotting positions for uncensored observations.
xcen	sorted left-censored observations.
ppcen	corresponding plotting positions for left-censored observations.
xrcn	sorted right-censored observations.
pprcn	corresponding plotting positions for right-censored observations.

Note

The left-censored plotting positions are adjusted by the method of Helsel and Cohn (1988), which produces a mean of 0.5 for all data.

References

Helsel, D.R. and Cohn, T.A., 1988, Estimation of descriptive statistics for multiply censored water quality data: Water Resources Research v. 24, n. 12, pp.1997-2004

See Also

ppoints

Examples

```
# This example demonstrates the probability adjustments made for censoring
# The raw, uncensored data:
ppoints(7, .44)
# censor ar 0.5 (the lowest 3 values)
censpp(as.lcens(ppoints(7, .44), 0.5))
```

censPPCC.test Test for Normality

Description

Computes the probability plot correlation coefficient test for departures from normality for leftcensored data.

Usage

censPPCC.test(x)

Arguments

Х

a vector of left-censored observations, missing values are removed before computation.

Value

An object of class "htest" having these components:

statistic	the value of the test statistic.
p.value	the attained p-value for the test.
data.name	a character string describing the name of the data used in the test.
method	a description of the method.
alternative	a description of the null and alternate hypotheses.

Note

The PPCC test is attractive because it has a simple, graphical interpretation: it is a measure of the correlation in a Q-normal plot of the uncensored data and is related to the Shapiro-Francia test for normality described by Royston (1993). The extension to multiple detection limit data is described in the help files in Millard (2001). The attained p-value for multiple detection limit data is only approximate.

34

censQtiles.CI

References

Millard, S.P., 2001, EnvironmentalStats for Spotfire S+ Help, Version 2.0. Probability, Statistics & Information, Seattle, WA.

Royston, P., 1993, A toolkit for testing for non-normality in complete and censored samples: The Statistician, v. 42, p. 37–43.

See Also

ppcc.test, censpp

censQtiles.CI Quantiles with Confidence Limits

Description

Computes sample quantiles and confidence limits of left-censored data for specified probabilities.

Usage

```
censQtiles.CI(x, probs = 0.5, CI = 0.9, bound = c("two.sided", "upper",
    "lower"))
```

Arguments

x	any R object than can be converted to class "lcens" to compute the sample quan- tiles. Missung values are permitted and are removed before computing the quan- tiles.
probs	numeric vector of desired probabilities with values between 0 and 1.
CI	the minimum desired confidence interval for each level specifed in probs.
bound	a character string indicating the desired bounds, "two.sided" means the two- sided interval, "upper" means the upper bound of the interval, and "lower" means the lower bound of the interval. Only a single character is needed. The lower confidence limit is -Inf when bound is "upper" and the upper confidence limit is Inf when bound is "lower."

Details

The survfit function in the survival package is used to compute the flipped Kaplan-Meier statistics. The type of confidence interval is "plain," which produces symmetric confidence intervals that maintain consistency when back flipping the estimates and is consisten with the B-C method described by Helsel (2012). Value

A matrix of sample quantiles, the lower confidence limit, the upper confidence limit, and the probability represented by the confidence interval corresponding to the probs levels in the sorted x data. Missing values denote values less than the minimum (either censored or uncensored) value. The minimum value is included as the "minimum" attribute of the matrix. The maximum value is included as the "maximum" attribute of the matrix.

References

Helsel, D.R. 2012, Statistics for censored environmental data using Minitab and R: New York, Wiley, 324 p.

See Also

censQuantile

Examples

```
## Generate a random sample
set.seed(222)
XX.rn <- rexp(32)
# Compare uncensored to the binomial method
censQtiles.CI(XX.rn, probs=c(.25, .5, .75))
qtiles.CI(XX.rn, probs=c(.25, .5, .75))</pre>
```

censQuantile Sample Quantiles

Description

Computes sample or estimated quantiles corresponding to the given probabilities. The smallest observation (censored or uncensored) corresponds to a probability of 0 and the largest to a probability of 1.

Usage

```
censQuantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE, method = "ROS",
  type = 2, alpha = 0.4)
## Default S3 method:
censQuantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE,
  method = "", type = 2, alpha = 0.4)
## S3 method for class 'lcens'
censQuantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE,
  method = "ROS", type = 2, alpha = 0.4)
```

36

censQuantile

```
## S3 method for class 'mcens'
censQuantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE,
   method = "flipped K-M", type = 2, alpha = 0.4)
## S3 method for class 'qw'
censQuantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE,
   method = "log MLE", type = 2, alpha = 0.4)
```

Arguments

х	an object of a censored-data class whose sample quantiles are wanted.
probs	numeric vector of probabilities with values in [0,1].
na.rm	logical; if TRUE, any NA and NaNs are removed from x before the quantiles are computed.
method	the method to use for computing quantiles. See Details.
type	an integer between 1 and 9 selecting one of the nine quantile algorithms detailed below to be used. See quantile for a description of the types.
alpha	the offset fraction to be used, depending on method; typically in [0,1].

Details

The methods available in the current version are "flipped K-M," "log ROS," "ROS," "log MLE," and "MLE." The method "flipped K-M" produces quantiles using the Kaplan-Meier method on flipped data described by Helsel (2012). The methods "log ROS" and "log MLE" are described by Helsel, 2012 and Helsel and Cohn (1988). The methods "ROS" and "MLE" are similar to "log ROS" and "log MLE" except that no log- and back-transforms are made on the data.

Value

An object of class "censQuantile" with one named component for each level requested in probs. The values returned for method="flipped K-M" can be of class "lcens."

References

Helsel, D.R. 2012, Statistics for censored environmental data using Minitab and R: New York, Wiley, 324 p.

Helsel, D.R. and Cohn, T.A., 1988, Estimation of descriptive statistics for multiply censored water quality data: Water Resources Research v. 24, n. 12, pp. 1997-2004

See Also

quantile, quantile.lcens

Examples

```
set.seed(28)
Xu <- rnorm(23)
censQuantile(Xu) # Uncensored (true) quartiles
censQuantile(as.lcens(Xu, 0)) # How'd ROS do?</pre>
```

censReg

censQuantile(as.lcens(Xu, 0), method="MLE") # How'd ROS do?

censReg

Censored Data Regression

Description

Builds a linear regression model for censored response data.

Usage

```
censReg(formula, data, subset, weights, na.action, dist = "normal")
```

Arguments

formula	a formula describing the regression model. See Details .
data	the data to search for the variables in formula.
subset	an expression to select a subset of the data.
weights	a variable to use for weights.
na.action	what to do with missing values.
dist	the distribution of the data, either "normal," "lognormal," or "commonlog." See Details .

Details

The left-hand side of the formula may be any numeric variable, just as with 1m or a variable of class "lcens," "mcens," or "qw."

For un- or left-censored data, AMLE is used unless weights are specified in the model, then MLE is used, through a call to survreg. For any other censored data, MLE is used.

If dist is "normal," then the regression analysis assumes that the residuals are normally distributed. If dist is "lognormal," then the regression analysis assumes that the residuals are lognormally distributed. In this case, predicted values are back transformed and optionally bias corrected to represent the expected mean. If dist is "commonlog," then the response data are transformed using log10 and those residuals are assumed to be normally distributed. No back transformation is made for predicted values.

Value

An object of class "censReg."

38

censReg

Note

A special feature of censReg is the ability to expand the formula passed as a variable rather than as an expressly entered formula. This feature is intended to facilitate certain kinds of scripts that construct a formula from combinations of variables in a dataset.

Objects of class "censReg" have these methods:

coef extract the regression coefficents

extractAIC compute another information criterion (AIC) value

fitted extract the fitted values

logLik compute the log-likelihood of the fitted model

nobs extract the number of observations used to fit the model

plot create some basic diagnostic plots

predict predict new values from the model

print print the model

residuals extract the residuals from the model

rmse compute the root mean squared error (residual standard error)

summary compute summary information about the model

vcov extract the variance-covariance matrix from the model

vif compute the variance inflation factors for the explanatory variables in the model

The AMLE method has arbitrary limitations on the size of the data: 24 explanatory variables and 5000 observations. Exceeding these will generate a warning message with the error code in the output object.

References

Lorenz, 2015, smwrQW.

Breen, R., 1996, Regression models: censored, sample selected, or truncated data: Sage University Paper series on Quantitative Applications in the Social Sciences, 07-111, Thousand Oaks, CA, Cohn, T.A., 1988, Adjusted maximum likelihood estimation of moments of lognormal populations from type I censored samples: U.S. Geological Survey Open-File Report 88-350, 34 p.

See Also

lm, survreg

Examples

```
set.seed(345)
X <- runif(24, 1, 5)
Y <- X/2 + rnorm(24)
lm(Y ~ X) # the uncensored regression
censReg(as.lcens(Y, 1) ~ X) # censored at 1</pre>
```

censReg_AMLE.fit Support Functions for Censored Regression

Description

These are support functions for fitting censored regression. They perform either AMLE or MLE regression.

Usage

```
censReg_AMLE.fit(Y, X, dist = "normal")
```

censReg_MLE.fit(Y, X, Wt, dist = "normal")

Arguments

Y	the response data.
Х	a matrix of the explanatory variables, including the intercept term.
dist	the distribuiton, either "normal" or "lognormal."
Wt	observation weights.

Value

a list containing the output from the FORTRAN code, or converted from survreg.

See Also

censReg, survreg

censReg_AMLE.pred Support Function for Censored Regression

Description

Support function for censored regression to predict values from a censored regression model.

Usage

```
censReg_AMLE.pred(fit, XPRED)
```

Arguments

fit	the output from censReg_AMLE.fit.
XPRED	a matrix of the prediction variables.

censStats

Value

A list containing the output from the FORTRAN code.

See Also

censReg,

```
censStats
```

Mean and Standard Deviation

Description

Computes the mean and standard deviation of censored data.

Usage

```
censStats(x, method = "MLE", na.rm = FALSE, alpha = 0.4)
## Default S3 method:
censStats(x, method = "MLE", na.rm = FALSE, alpha = 0.4)
## S3 method for class 'lcens'
censStats(x, method = "MLE", na.rm = FALSE, alpha = 0.4)
## S3 method for class 'mcens'
censStats(x, method = "MLE", na.rm = FALSE, alpha = 0.4)
## S3 method for class 'qw'
censStats(x, method = "log MLE", na.rm = FALSE, alpha = 0.4)
```

Arguments

х	an object of a censored-data class whose sample mean and standard deviation are needed.
method	the method to use for computing the statistics. See Details.
na.rm	logical; if TRUE, any NA and NaN's are removed from x before the quantiles are computed.
alpha	the offset fraction to be used, depending on method; typically in [0,1].

Details

The methods available in the current version are "log MLE," "MLE," "log ROS," "ROS," "log AMLE," "AMLE," and "flipped K-M." The method "flipped K-M" produces statistics using the Kaplan-Meier method on flipped data described by Helsel (2012). The methods "log ROS," "log MLE," and "log AMLE" are described by Helsel (2012) and Helsel and Cohn (1988). The methods "ROS," "MLE," and "AMLE" are similar to the previous except that no log- and back-transforms are made on the data. For "log" methods, if any value in x is negative, then a warning is generated and the returned list contains missing values.

Value

A list with one component for mean and sd. If "log" methods are specified, then the meanlog amd meansd components are also included. The values returned for method="flipped K-M" can be of class "mcens."

References

Helsel, D.R. 2012, Statistics for censored environmental data using Minitab and R: New York, Wiley, 324 p.

Helsel, D.R. and Cohn, T.A., 1988, Estimation of descriptive statistics for multiply censored water quality data: Water Resources Research v. 24, n. 12, pp.1997–2004

See Also

mdlAMLE, mdlKM, mdlKMstats, mdlMLE, mdlROS

Examples

```
set.seed(936)
Y <- rlnorm(32)
# Uncensored statistics
censStats(Y, method="log MLE")
# Censored statistics, at 1 (37.5 percent)
censStats(as.lcens(Y, 1), method="log MLE")</pre>
```

censSumStats Summary Statistics

Description

Computes selected summary statistics for censored data.

Usage

```
censSumStats(..., group = NULL, Nums = TRUE, Stats = TRUE,
Probs = (0:4)/4, na.rm = TRUE, method = "log MLE")
```

Arguments

	any number of vectors or a data frame of the data to be summarized. If is a data frame, then only numeric data, including "lcens," "mcens," and "qw" data types, will be summarized.
group	the data to group the data in
Nums	logical, include the number of observations and numbers of censored values in the output data.frame.
Stats	logical, include the mean and standard deviation in the output data.frame.

code01

Probs	the argument to quantile specifying the desired probabilities in the output data.frame
na.rm	logical, remove missing values before processing?
method	the method to use for computing the statistics. Must be one of "log MLE," "MLE," "log ROS," "ROS," or "flipped K-M." The method "flipped K-M" is only applicaple to un- or left-censored data.

Value

A data.frame with the selected statistics for each variable in ... grouped by each unique value in group.

code01

Code Censored Values

Description

Recodes censored data to a binary coding system with 0 indicating less than some critical value and 1 indicating greater than or equal to that critical value.

Usage

code01(..., criteria)
Default S3 method:
code01(..., criteria)
S3 method for class 'data.frame'
code01(..., criteria)

Arguments

	either a data frame that contains columns of class "qw" or any combination of individual vectors of class "integer," "numeric," "lcens," or "qw." Missing values are removed before processing.
criteria	a vector indicating the critical values for each repsective value in May be a named vector containing critical values for the named argument in or not supplied. For any argument in that does not have a critical value, the critical value is the largest censoring level or if the data have no censored values, the median. The critical value can never be smaller than the largest censoring level and will be changed with a warning message. A special case is for integer values that have a minimum of 0—for those data the default criterion is to return 0 if the value is 0 and return 1 for any other value.

Value

A data frame containing the binary coded values. Each column has an attribute called "critical.value" that reports the critical value used to recode the values in that column. The column names are taken from ...; the rownames are derived from the sequential numbers of the original data.

codeU

Code Censored Values

Description

Recodes censored data to u-scores, which is the sum of the sign of the differences between each value and all other values. It is equivalent to the rank but scaled so the mean is 0.

Usage

```
codeU(...)
## Default S3 method:
codeU(...)
## S3 method for class 'data.frame'
codeU(...)
```

Arguments

```
• • •
```

either a data frame that contains columns of class "qw" or any combination of individual vectors of class "numeric," "lcens," or "qw." Missing values are removed before processing.

Value

A data frame containing the u-coded values. The column names are taken from ...; the rownames are derived from the sequential numbers of the original data.

coef.censReg	Extract Model Coefficients	
--------------	----------------------------	--

Description

Extracts the model coefficients from a censored regression object: method for "censReg" object.

Usage

```
## S3 method for class 'censReg'
coef(object, summary = FALSE, ...)
```

44

Compare-censored

Arguments

object	the output from censReg.
summary	include standard errors and other information?
	further arguments passed to or from other methods.

Value

Either a names vector of the coefficients, if summary is FALSE or a matrix of the coefficients, their standard errors, z-scores, and attained p-values, if summary is TRUE.

Note

The attained p-values are computed from the log-likelihood test for AMLE regression and from a Wald chi-square test for MLE regression.

See Also

censReg,

Compare-censored Comparison Methods for lcens, mcens, and qw objects

Description

Comprisons are possible and well-defined between numeric and censored or water-quality data. Comparisons between censored data types are not supported in this version.

Usage

```
## S4 method for signature 'lcens,numeric'
Compare(e1, e2)
## S4 method for signature 'mcens,numeric'
Compare(e1, e2)
## S4 method for signature 'qw,numeric'
Compare(e1, e2)
## S4 method for signature 'numeric,lcens'
Compare(e1, e2)
## S4 method for signature 'numeric,mcens'
Compare(e1, e2)
## S4 method for signature 'numeric,qw'
Compare(e1, e2)
```

convert2qw

Arguments

e1, e2	numeric, censored, or water-quality data. Missing values are permitted in either
	argument and result in a missing value in the output.

Details

For all comparisons, the censored data are converted to multiply censored data, class "mcens." The conversion from class "qw" preserves the strict interpretation of less-than values as greater than or equal to 0 and less than the reporting level. The distinction of being strictly less than is lost for the conversion of left-censored data, class "lcens."

Value

A logical vector the represents the result of the comparison between each element in e1 and e2.

Examples

as.lcens(c(1, 3), 2) > 1 as.lcens(c(1, 3), 2) < 4

convert2qw

Water-Quality Data

Description

Converts information from discrete water-quality samples to data of class "qw." Attempts to construct the best-fit estimates for data of class "qw" from more limited data sources like just remark codes and values. But will also convert data created by as.data.frame(object of class qw, expand=TRUE).

Usage

```
convert2qw(data, scheme = "booker")
```

Arguments

data	a data frame that contains limited sample information.
scheme	a character string that describes the naming style of the variables in data that are to be conterted to class "qw." See Details .

convertFqw

Details

The options for scheme are "booker," "qw," and "partial." The "booker" naming scheme assumes that remark columns begin with "R" or "r" and the value columns begin with "P" or "p." That scheme is the most limited form because it forces missing values or blanks for almost all other of the meta data. The "qw" scheme assumes that the columns are named according to as.data.frame(object of class qw, expand=TRUE). The "partial" scheme assumes that the basic scheme from as.data.frame(object of class qw, expand=TRUE) is retained, but not all columns are required. Variations include no suffix for the value and .dl in lieu of .rlv for the detection limit. When .dl is used, the method detection limit is assumed to be "MDL" if not supplied. If the scheme is "partial," then at least the value and remark or detetion limit or reporting limit must be supplied.

Value

A data frame of the water-quality data of class "qw" organized by sample. Column names for the water-quality constituents are generated automatically. Other columns are retained unchanged.

References

Lorenz, D.L., 2014, smwrQW OFR. See information about discrete samples at https://nwis.waterdata.usgs.gov/usa/nwis/qw.

See Also

readNWISqw, makeColNames

Examples

```
# Make a dummy partial dataset
tmp.dum <- data.frame(sta=c("A", "B"),
Val=c(1, 1.2),
Val.rmk=c("<", ""),
Val.dl=c(1, 1), stringsAsFactors=FALSE)
convert2qw(tmp.dum, scheme="partial")
```

convertFqw

Water-Quality Data

Description

Converts information from data of class "qw" to separate columns representing the data in the "qw" columns. This can facilitate transfer to other systems or editing the meta data in a "qw" column. Uses as.data.frame(object of class qw, expand=TRUE) to convert each "qw" column.

Usage

```
convertFqw(data, columns = "")
```

Arguments

data	a data frame that contains limited sample information.
columns	a character vector listing the names of the columns to convert. If a single empty character string, the default, then convert all "qw" columns.

Value

A data frame of the converted water-quality data and all other columns in the original dataset.

Note

This function can be used in conjunction with convert2qw to update or modify reporting levels or inspect the details of the meta data.

References

Lorenz, D.L., 2014, USGSwsQW OFR. See information about discrete samples at https://nwis.waterdata.usgs.gov/usa/nwis/qw.

See Also

readNWISqw, convert2qw

Examples

```
# Make a dummy partial dataset
tmp.dum <- data.frame(sta=c("A", "B"),
Val=c(1, 1.2),
Val.rmk=c("<", ""),
Val.dl=c(1, 1), stringsAsFactors=FALSE)
tmp.qw <- convert2qw(tmp.dum, scheme="partial")
# Expand the result
convertFqw(tmp.qw)
```

dlimit

Impute Detection Limits

Description

Imputes values for missing detection limits for left-censored data.

Usage

```
dlimit(values, censor.codes, default = 1e-25)
```

dlimit

Arguments

values	the numeric values.
censor.codes	logical or character, TRUE or "<" indicates left-censored at value and FALSE, " " or "" indicates a quantified value. Character codes "E" and "J" are censored at the current detection limit. Other characters are ignored and generate a warning.
default	the default detection limit value to assign to an uncensored value that is less than the currently imputed detection limit value.

Value

A vector of detection limits matched with each of the input values.

Warning

Tim Cohn, written communication, 5 Nov 2002 states that there are several problems with this approach:

1) for large data sets, it may be difficult for the user to group the observations into subsets as in the example above. If the observations are not grouped into subsets or the subsets do not have the censored observations as the first records, incorrect detection limits may be applied to the uncensored data.

2) for the case of multiple constituents, it may be impossible to place the censored observation within each subset at the top of the subset. Consider constituents Y and Z, each analyzed at Lab B, and each with one censored observation. The censored observations occur on different dates. In this case its not possible to have both observations as the first line in the subset from Lab B. (Note: the user could work around this problem by doing separate runs for each constituent.)

3) When a subset of observations is completely uncensored, the detection limit from another subset will be applied. Consider the example above, but with the 10 observations from Lab B being completely uncensored. In this case, the detection limit from Lab A will be used for all 20 observations.

4) When all of the observations are uncensored (no '<' signs for a given constituent), there is no way for the user to specify the detection limit(s). In this case, a default value of 1.E-25 is used for all observations (consistent with ESTIMATOR).

Despite these problems, the approach is satisfactory for most applications: "the estimates are not very sensitive to the precise value of the censoring threshold for the above-threshold values."

Note

This function is based on the DLIMIT function in LOADEST (Runkel and others, 2004). The general assumption for imputing detection limits is that the data are sorted by time and the detection limits changes in a consistent pattern over time.

References

Runkel, R.L., Crawford, C.G., and Cohn, T.A., 2004, Load estimator (LOADEST) a FORTRAN program for estiamting constituent laods in streams and rivers: U.S. Gelogical Survey Techniques and Methods 4-A5, 69. Available online as https://pubs.er.usgs.gov/publication/tm4A5.

See Also

readNWQLd1

Examples

```
## The actual detection limits are 2,2,2,1,1,1.
dlimit(c(2,2,3,1,1,2), c(" ", "<", " ", " ", " ", "<", " "))</pre>
```

dotPlot-censored Censored Data Methods for Function dotPlot

Description

Produces a dot plot: methods for "mcens" and "qw" data.

Usage

```
## S4 method for signature 'mcens'
dotPlot(x, y, Plot = list(name = "", what = "points", type =
  "solid", width = "standard", symbol = "circle", filled = TRUE, size = 0.09,
 color = "black"), yaxis.orient = "table", yaxis.order = "none",
 yaxis.grid = TRUE, xaxis.log = FALSE, xaxis.range = c(NA, NA),
 ylabels = "full", xlabels = 7, xtitle = deparse(substitute(x)),
 ytitle = "", caption = "", margin = c(NA, NA, NA, NA),
 jitter.y = TRUE, Censored = list(name = "", what = "points", symbol =
  "circle", filled = FALSE, size = 0.09, color = "black", bar = TRUE), ...)
## S4 method for signature 'qw'
dotPlot(x, y, Plot = list(name = "", what = "points", type =
  "solid", width = "standard", symbol = "circle", filled = TRUE, size = 0.09,
  color = "black"), yaxis.orient = "table", yaxis.order = "none",
 yaxis.grid = TRUE, xaxis.log = FALSE, xaxis.range = c(NA, NA),
 ylabels = "full", xlabels = 7, xtitle = deparse(substitute(x)),
 ytitle = "", caption = "", margin = c(NA, NA, NA, NA),
 jitter.y = TRUE, Censored = list(name = "", what = "points", symbol =
  "circle", filled = FALSE, size = 0.09, color = "black", bar = TRUE), ...)
```

Arguments

x	the x-axis data. Missing values are permitted and not plotted.
У	the y-axis data, expected to be be either character or factor. Missing values are permitted and removed before plotting.
Plot	control parameters for uncensored values of the plot, see link{setMultiPlot} and Details for details.
yaxis.orient	orientation of the y-axis values, must be either "table" or "grid." "Table" is sorted from top to bottom, "grid" is sorted from bottom to top.
yaxis.order	the order of the y-axis values, must be one of "none," "ascending," or "descending."
yaxis.grid	draw grid lines?
xaxis.log	log-transform the x axis?
xaxis.range	set the range of the x-axis
ylabels	set up y-axis labels.
xlabels	set up x-axis labels.
xtitle	x-axis title.
ytitle	y-axis title.
caption	the figure caption.
margin	the parameters of the margin.
jitter.y	logical, if TRUE, then adjust y values to reduce overlap for each group, or adjust randomly if no groups. If FALSE, then no adjustment is made.
Censored	control parameters for censored values of the plot.
	arguments for specific methods.

Details

The what component of the Plot argument must be either "points" or "none."

Value

Information about the graph.

Note

A call should be made to setPage to set up the graphics environment before calling dotPlot.

See Also

setPage

ecdfPlot.lcens

Description

Produces a graph of the empirical distribution function: methods for "lcens" and "qw" data.

Usage

```
## S3 method for class 'lcens'
ecdfPlot(x, group = NULL, Plot = list(name = "Auto", what =
    "stairstep", type = "solid", width = "standard", symbol = "circle", filled =
    TRUE, size = 0.09, color = "Auto"), xaxis.log = TRUE, xaxis.range = c(NA,
    NA), xlabels = 11, ylabels = 5, ytitle = "Cumulative Probability",
    xtitle = deparse(substitute(x)), caption = "", margin = c(NA, NA, NA,
    NA), ...)
## S3 method for class 'qw'
ecdfPlot(x, group = NULL, Plot = list(name = "Auto", what =
    "stairstep", type = "solid", width = "standard", symbol = "circle", filled =
    TRUE, size = 0.09, color = "Auto"), xaxis.log = TRUE, xaxis.range = c(NA,
    NA), xlabels = 11, ylabels = 5, ytitle = "Cumulative Probability",
    xtitle = deparse(substitute(x)), caption = "", margin = c(NA, NA,
    NA), xlabels = 11, ylabels = 5, ytitle = "Cumulative Probability",
    xtitle = deparse(substitute(x)), caption = "", margin = c(NA, NA,
    NA), xlabels = 11, ylabels = 5, ytitle = "Cumulative Probability",
    xtitle = deparse(substitute(x)), caption = "", margin = c(NA, NA,
    NA), xlabels = 11, ylabels = 5, ytitle = "Cumulative Probability",
    xtitle = deparse(substitute(x)), caption = "", margin = c(NA, NA,
    NA,
    NA), ...)
```

Arguments

х	the data to plot. Missing values are removed before plotting.
group	create groups of the left-censored data vector.
Plot	control parameters of the uncensored data plot.
xaxis.log	log-transform the x axis?
xaxis.range	set the range of the x axis.
xlabels	set the x-axis labels. See linearPretty for details.
ylabels	set the y-axis labels. See linearPretty for details.
ytitle	the y-axis title.
xtitle	the x-axis title.
caption	the figure caption.
margin	the parameters of the margin of the plot area.
	any additional arguments needed by specific methods.

Value

Information about the graph.

extractAIC.censReg

See Also

probPlot.lcens

Examples

```
## Not run:
set.seed(1932)
Xu <- rlnorm(32)
setPage("sq") # required page set up
ecdfPlot(as.lcens(Xu, 1.0))
```

End(Not run)

extractAIC.censReg Extract AIC from a Fitted Model

Description

Computes the Akaike (1974) An Information Criterion for a censored regression object: method for "censReg" object.

Usage

S3 method for class 'censReg'
extractAIC(fit, scale = 0, k = 2, correct = FALSE, ...)

Arguments

fit	an object of class "censReg"—output from censReg.
scale	set scale, ignored in current version.
k	the weight of the equivalent degrees of freedom.
correct	logical if TRUE and k is set to 2, then return corrected AIC, if FALSE or k is not set to 2,then return the uncorrected value, either AIC or BIC.
	further arguments passed to or from other methods.

Value

A vector of length 2, giving the equivalent degrees of freedom and the AIC for fit.

References

Akaike, H., 1974, A new look at the statistical model identification: IEE transactions on Automatic Control, v. 19, no. 6, p. 716–723.

See Also

censReg, extractAIC

fillIn

Description

Estimates values for censored data.

Usage

```
fillIn(x, method, alpha)
## S3 method for class 'numeric'
fillIn(x, method, alpha)
## S3 method for class 'lcens'
fillIn(x, method = "ROS", alpha = 0.4)
## S3 method for class 'mcens'
fillIn(x, method = "ROS", alpha = 0.4)
```

Arguments

х	an object of class "lcens." Missing values are ignored.
method	the method to use for estimating censored values: "ROS," "log ROS," "MLE," or "log MLE" are valid for any left- or multiply-censored data ; "triangular," "fill" and "log fill" are valid for left-censored data with a single detection limit; method is ignored for uncensored data.
alpha	the offset fraction to be used for plotting position; typically in [0,0.5].

Details

The methods of Regression on Order Statistics (ROS) and MLE is explained in Helsel (2012). The "log ROS" first log-transforms the data and back-transforms the estimated values. The triangular method distributes the censored value assuming a triangular distribution between 0 and the single detection limit. Quinn and Keogh (2003) describe alternatives to simple substituion of a single value that sample from an alternate distribution. The triangular distribution is a reasonable distribution when the percentage of censored data is relatively small, say less than 30 percent. The "fill" and "log fill" methods implement the method described by Gleit (1985).

Value

A vector of sorted estimates and actual values with an attribute of the censoring levels.

fitted.censReg

References

Helsel, D.R. 2012, Statistics for censored environmental data using Minitab and R: New York, Wiley, 324 p.

Quinn, G.P. and Keogh, M.J., 2003, Experimental design and data analysis for biologists, Cambridge University Press, Cambridge, UK, 539 p.

See Also

as.double.qw

Examples

```
set.seed(5420)
XR <- sort(rnorm(10))
XF <- fillIn(as.lcens(XR, -1)) # censors lowest 3 values
#How'd we do?
rbind(XR, XF)
#Note that this is unusual because all 10 random values were less than the mean!</pre>
```

fitted.censReg Extract Model Fitted Values

Description

Extracts the fitted values from a censored regression object: method for "censReg" object.

Usage

```
## S3 method for class 'censReg'
fitted(object, suppress.na.action = FALSE,
   type = c("response", "link", "mean"), ...)
```

Arguments

object	an object of class "censReg"—output from censReg
suppress.na.action	
	logical, suppress the effects of the na.action in the call to censReg and return only the fitted values corresponding to the fitted data.
type	the type of fitted value. To get fitted values on the original scale of the response, use "response." For back-transformed log-normal fitted values, use "link." To get the unbiased estimates of the mean for log-normal data, use "mean." Note that "link" and "mean" do not work for the common-log distribution.
	further arguments passed to or from other methods.

Value

The fitted values from the regression.

See Also

censReg

format.lcens

Encode in a Common Format

Description

Formats data for pretty printing: methods for "lcens," "mcens," and "qw" data.

Usage

```
## S3 method for class 'lcens'
format(x, digits = NULL, ...)
## S3 method for class 'mcens'
format(x, digits = NULL, ...)
## S3 method for class 'qw'
format(x, round = TRUE, units = FALSE, style = "asis", ...)
```

Arguments

х	the censored data object to format.
digits	how many significant digits are to be used for numbers?
	further arguments passed to or from other methods.
round	round the data before formating? Can also be a numeric vector of length 2 containing the maximum number of significant digits and the maximum number of decimal digits.
units	logical, if TRUE then include the units of the data.
style	the style for objects of class "qw." See Details.

Details

The argument style must be one of "asis," which tries to format the data to best show the values; "simple," which is like "asis" except that interval censored data are the midrange values preceded by "I"; or "interpreted," which shows the values as they would be used in analysis and round is ignored. Only the first letter is required.

Value

A character representations of the elements of x.

Note

For style set to "asis," it is often useful to set round to a single value so that the interval data are not rounded to the same value.

56

gehanScores

Examples

```
format(as.lcens(1:3, 1))
format(as.mcens(1:3, 1:3))
```

gehanScores Gehan Test Scores

Description

Computes Gehan scores that compare the values in one group to the values in another group.

Usage

gehanScores(x, y, na.rm = FALSE)

Arguments

x	any object that can be converted to class "mcens." Missing values are permitted and result in corresponding missing values in the output.
У	any object that can be converted to class "mcens." Missing values are permitted but result in missing values in the output unless na.rm is TRUE. See Details .
na.rm	remove missing values from y before comparing to x?

Details

If y is missing, then x is compared to itself (with NAs removed) and the output is the u-score described in Helsel (2012).

Value

A numeric vector that is the result of the comparison of each value in x to all values in y. It is the equivalent of the "h" score in described by Helsel, but the signs are reversed so that larger values in x have larger values in the output.

Note

If the output is the u-score, y is missing, then the values can be converted to ranks by dividing by 2 and adding the mean rank, (length(x) + 1)/2.

References

Gehan, E.A., 1965, A generalized Wilcoxon test for comparing arbitraritly singly censored samples: Biometrika, v. 52, p. 203-223.

Helsel, D.R. 2012, Statistics for Censored Environmental Data Using Minitab and R: New York, Wiley, 324 p.

See Also

survdiff, survfit, lcens-class

genWilcox.test Test for Difference in Censored Samples

Description

This function tests for differences in censored samples from 2 groups. Two methods are available the Peto-Prentice test is appropriate only for left-censored data. The Gehan test has been extended to multiply censored data as suggested in Gehan (1965) but uses a permutation test to compute the variance.

Usage

```
genWilcox.test(x, y, alternative = "two.sided", method = "best", data.names,
gehan.seed = 0)
```

Arguments

x	the samples from each group. Forced to the appropriate class. Missing values are removed before the analysis.
У	either another set of samples or a group identifier with exactly two groups. Miss- ing values are removed before the analysis. See Details .
alternative	character string describing the alternative hypothesis. Must be one of "two.sided, "greater," or "less."
method	a character string indicating which method to use for the analysis. See Details.
data.names	character string to be used to explain the data. Default names are derived from the data arguments.
gehan.seed	an integer value to set the seed to compute the variance of the Gehan statis- tic. If 0 (the default), then use equation 9.5 from Helsel (2012) to compute the variance.

Details

If y is either type character or factor, then it is assumed to be a group identifier. Anything else is treated as another set of sample and forced to the appropriate class of censored data.

The argument method must be one of "peto" or "gehan." It may also be "best," which selects "peto" for uncensored or left-censored data and "gehan" otherwise.

Value

An object of class "htest" that inherits "genWilcox."

Null Hypothesis

The null hypothesis is that the distributions are not different from one another.

Note

The genWilcox.test function uses the survfit function. Helsel (2012) describes flipping the leftcensored data so that small values become large and left-censored values become right-censored values and adapt nonparametric techniques from survival analysis. The results from survfit are printed as the sample estimates when printing the output, the important columns are records, the number in each group; events, the number of uncensored values; and median, the group median. A plot method is supported for the returned object.

References

Gehan, E.A., 1965, A generalized Wilcoxon test for comparing arbitraritly singly censored samples: Biometrika, v. 52, p. 203-223.

Harrington, D.P., and Fleming, T.R., 1982, A class of rank test procedures for censored survival data: Biometrika, v. 69, p. 553-566.

Helsel, D.R. 2012, Statistics for Censored Environmental Data Using Minitab and R: New York, Wiley, 324 p.

Peto, R., and Peto, J., 1972, Asymptotically efficient rank invariant test procedures (with discussion): Journal of the Royal Statistical Society, Series A v. 135, p. 185-206.

Prentice, R.L. 1978, Linear rank tests with right-censored data: Biometika, v 65, p 167-179.

Prentice, R.L., and Marke, P., 1979, A qualitative discrepancy between censored data rank tests: Biometrika, v. 35, p. 861-867.

See Also

survdiff, survfit, lcens-class

Examples

```
# Compare uncensored results
# First for grouped data
set.seed(69)
Xu <- rlnorm(22, 0, 1)
Yu <- rlnorm(22, .6, 1)
genWilcox.test(Xu, Yu)
wilcox.test(Xu, Yu)
# Compare effect of censoring
genWilcox.test(as.lcens(Xu, 1), Yu)
genWilcox.test(as.lcens(Xu, 1), as.lcens(Yu, 1))</pre>
```

importNWISqw Water-Quality Data

Description

Imports discrete water-quality sample data from NWISweb.

Usage

```
importNWISqw(sites, params = "All", begin.date = "", end.date = "",
keep = NULL, use.pnames = FALSE)
```

Arguments

sites	a vector of the USGS station identifiers.
params	A character string contains the name of a group of parameter codes, or a vector of parameter codes. See Details .
begin.date	the earliest date for data, must be a character with the format "YYYY-mm-dd."
end.date	the latest date for data, must be a character with the format "YYYY-mm-dd."
keep	a character vector for any additional columns to retain from the retrieved data.
use.pnames	create colummn names based on pcode (like P00000)? Default is to generate more English-like names.

Details

Valid parameter code groups are "All," or group codes:

Code	Description
INF	Information
PHY	Physical
INM	Inorganics, Major, Metals (major cations)
INN	Inorganics, Major, Non-metals (major anions)
NUT	Nutrient
MBI	Microbiological
BIO	Biological
IMN	Inorganics, Minor, Non-metals
IMM	Inorganics, Minor, Metals
TOX	Toxicity
OPE	Organics, pesticide
OPC	Organics, PCBs
OOT	Organics, other
RAD	Radiochemical
SED	Sediment

importQW

POP Population/community

Value

A data frame of the water-quality data of class "qw" organized by sample. Column names for the water-quality constituents are generated automatically, but can be set by the user, see makeColNames.

Note

The sample information columns that are automatically retained are the USGS station identifier, sample date, sample time, time zone code, and medium code. If composite samples are found in the data, then sample end date and sample end time are also included. Use the keep argument to retain more if needed.

NWIS has several remark codes that have special meaning in addition to "<," which indicates a left-censored value and ">," which indicates a right censored value. Most other codes are ignored in processing, but passed through and retained as the remark code in the data; a warning is printed when special remark codes are retained. NWIS also uses the remark code "M" to indicate whan a result value is rounded to 0. In that case, importNWISqw tries to recode the data as less than the reporting level, but is the reporting level is the missing value NA, the remark code "M" is retained. Warnings are generated for both conversion and retention of the "M" remark codes.

References

Lorenz, D.L., 2014, smwrQW OFR. See information about discrete samples at https://nwis.waterdata.usgs.gov/usa/nwis/qw.

See Also

readNWISqw

Examples

```
## Not run:
importNWISqw("05330000", "00608") # Ammonia samples from the Minnesota River at Jordan.
Empty <- importNWISqw('05330000',c('00400','00403'),begin.date='2008-01-01')</pre>
```

End(Not run)

importQW

Water-Quality Data

Description

Converts a dataset containing stacked discrete water-quality sample data to a dataset representing those data as class "qw."

Usage

```
importQW(data, keep = c("STAID", "DATES", "TIMES", "MEDIM"),
values = "VALUE", remark.codes = "REMRK", value.codes = "NWIS",
reporting.level = "RPLEV", reporting.method = "RLTYP",
reporting.units = "UNITS", analyte.method = "METHD",
analyte.name = "PSNAM", unique.code = "PCODE", ColNames = "Auto")
```

Arguments

data	the dataset.
keep	the names of the columns that represent a single sample and any other common information.
values	the name of the column containing the reported numeric values.
remark.codes	he name of the column containing the remark codes.
value.codes	the name of the column containing any value modifiers, or the character string to use. See Details .
reporting.level	
	the name of the column containing the reporting level, or the numeric value to use. See Details .
reporting.metho	od
	the name of the column containing the type of the reporting level, or the charac- ter string to use. See Details .
reporting.units	6
	the name of the column containing the measurement units, or the character string to use. See Details .
analyte.method	the name of the column containing the analytic method, or the character string to use. See Details .
analyte.name	the name of the column containing the name of the analyte, or the character string to use. See Details .
unique.code	the name of the column containing any unique codes, or the character string to use. See Details .
ColNames	the name of the column containing the column name to use to make column names, the character string to use if only a single analyte, or "Auto" if the data in unique.code are USGS parameter codes. See Details .

Details

Only values and remark.codes are required. All others can be interpreted as constant values if the column name is not in data. For automatic generation of column names, see makeColNames. For reporting.level, it is better to use NA than to use an arbitrary small value because the functions to convert to objects for analysis will create reasonable reporting level values if they are not known.

For other columns when the actual value is not known, the actual value is less important for analysis and more important for the user, so arbitrary values can be used.

imputeLessThans

Value

A data frame containing the columns in keep and those generated by converting the other columns into class "qw."

Note

Need some notes

References

Lorenz, D.L., 2014, USGSqw OFR. See information about discrete samples at https://nwis.waterdata.usgs.gov/usa/nwis/qw.

See Also

readNWISqw, importNWISqw, makeColNames

Examples

```
## Not run:
# Convert the stacked qw data supplied in smwrData
library(smwrData)
data(QWstacked)
QWstacked$result_va <- as.numeric(QWstacked$result_va) # raw data are character
# The units are both mg/l, no analyte name, generate column names from parameter codes
head(importQW(QWstacked, c("site_no", "sample_dt", "sample_tm", "medium_cd"),
    "result_va", "remark_cd", "val_qual_tx", "rpt_lev_va", "rpt_lev_cd",
    "mg/l", "meth_cd", "", "parm_cd", "parm_cd"))
# A simple example having the minimum information
data(QW05078470, c("DATES", "TIMES"), "P00665", "R00665", "", 0.005, "User",
    "mg/l", "Unk", "Dissolved Phosporus", "00665", "DissP")
```

End(Not run)

imputeLessThans Impute Censored Values

Description

Imputes substitute values for left-censored values using the expectation maximization method.

Usage

```
imputeLessThans(..., type = c("MLE", "robust"), initial = c("complete.obs",
    "multRepl"))
```

Default S3 method:

```
imputeLessThans(..., type = c("MLE", "robust"),
    initial = c("complete.obs", "multRepl"))
## S3 method for class 'data.frame'
imputeLessThans(..., group = NULL, type = c("MLE",
    "robust"), initial = c("complete.obs", "multRepl"))
```

Arguments

	either a data frame that contains columns of class "qw" or any combination of individual vectors of class "numeric," "lcens," or "qw." Missing values are removed before processing.
type	the type of estimate, "MLE" for maximum likelihood estimates, or "robust" for robust estimation methods. See lrEM for details.
initial	the method to use for the initial log-ratio covariance matrix, either "complete.obs" that uses only the rows with no censored data to construct the matrix, or "mul- tRepl" that uses simple substitution of censored values to compute the matrix. See lrEM for details.
group	character string, the name of the column in the data frame to indicate a group for imputation. See Details

Details

Imputation of left-censored data requires the assumption of multivariate log-normality for a single population. If the data represent samples from multiple populations, then they should be identified by the group argument. The minimum size for any group is 3.

Value

A data frame containing the original data with imputed censored values.

See Also

lrEM, mImputeLessThans

is.na.lcens

Missing Values

Description

Indicates which elements are missing: methods for "lcens," "mcens," and "qw" data.

kendallATS.test

Usage

S3 method for class 'lcens'
is.na(x)
S3 method for class 'mcens'
is.na(x)
S3 method for class 'qw'
is.na(x)

Arguments

x the object to be tested.

Value

A logical vector of the same length as its argument x, containing TRUE for those elements marked NA and FALSE otherwise.

Examples

is.na(as.lcens(c(1,3, NA), 2))

kendallATS.test Kendall' tau

Description

Computes Kendall's tau for left-censored data and the Akritas and others (1995) Theil-Sen slope estimator.

Usage

```
kendallATS.test(x, y, na.rm = TRUE)
```

Arguments

х	any data that can be converted to a left-censored data object.
У	any data that can be converted to a left-censored data object.
na.rm	remove missing values before performing the test?

an object of class "htest" having these components:

statistic	the value of the taub statistic.
p.value	the attained p-value for the test.
data.name	a character string describing the name of the data used in the test.
method	a description of the method.
alternative	a description alternate hypotheses, always "two-sided."
null.value	the value of taub for the null hypothesis.
estimate	the ATS slope, and medians of x and y.
coef	the coefficients of the monotic fit line. See Note.
<pre>slope.se</pre>	an estimate of the standard error of the slope.

Note

The intercept is computed as slope * -median.x + median.y. The coef vector is designed to graphically represent the relation between x and y. It is not intended for prediction proposes.

References

Akritas, M.G., Murphy, S.A., and LaValley, M.P., 1995, The Theil-Sen estimator with doublycensored data and applications to astronomy: Journal of the American Statistical Association, v. 90, p. 170–177.

Helsel, D.R. 2005, Nondetects and data analysis: New York, Wiley, 266 p.

Examples

```
# Simple no censoring
set.seed(450)
tmp.X <- rnorm(25)
tmp.Y <- tmp.X/2 + rnorm(25)
cor.test(tmp.X, tmp.Y, method="k", exact=FALSE, continuity=TRUE)
kendallATS.test(tmp.X, tmp.Y)
# Some censoring
kendallATS.test(as.lcens(tmp.X, -1), as.lcens(tmp.Y, -1))</pre>
```

Left-censored Data

lcens-class

Description

Class "lcens" describes left-censored data.

length.lcens

Slots

- .Data a 2-column matrix that contains the value and the detection limit of the left-censored data. Missing values are permitted.
- censor.codes a logcial value, TRUE indicates a censored value, FALSE indates an uncensored value. Missing values are permitted only for missing values in .Data.

names a character vector of unique names for each element in .Data.

Objects from the Class

Objects can be created by calls to as.lcens.

References

Lorenz, D.L., in preparation

Examples

showClass("lcens")

length.lcens Length of an Object

Description

Gets the length of a vector: methods for "lcens," "mcens," and "qw" data.

Usage

```
## S3 method for class 'lcens'
length(x)
## S3 method for class 'mcens'
length(x)
## S3 method for class 'qw'
length(x)
## S3 method for class 'mcens'
length(x)
## S3 method for class 'qw'
length(x)
```

Arguments ×

a censored-data or water-quality object.

Value

An integer of length 1 indicating the number of elements in x.

Examples

```
length(as.lcens(c(1,3, NA), 2))
```

logLik.censReg Extract Log-Likelihood

Description

Extracts the log-likelihood statistic from a censored regression object: method for "censReg" object.

Usage

S3 method for class 'censReg'
logLik(object, ...)

Arguments

object	the output from censReg.
	further arguments passed to or from other methods.

Value

An object of class "logLik" containing the log-likelihood and the attributes "df" (degrees of freedom) and "nobs" (number of observations).

See Also

censReg,

makeColNames

Description

Creates valid, unique column names for water-quality constituents.

Usage

makeColNames(params, name, short)

Arguments

params	the parameter codes.
name	the long-name of the parameter code.
short	the short name of the parameter code.

Details

The arguments name and short are expected to be columns retreived by those arguments in the function pcodeNWISqw.

Value

A data frame containing the columns parm_cd and col_name.

Note

This function is a support function designed to be called within other functions.

See Also

pcodeNWISqw, pcodeColData

Math-censored Mathematical Transform Methods for lcens objects

Description

Some limited mathematical methods are possible and well-defined for censored or water-quality data.

Usage

```
## S4 method for signature 'lcens'
Math(x)
## S4 method for signature 'mcens'
Math(x)
## S4 method for signature 'qw'
Math(x)
```

Arguments

x the object to transform

Examples

log(as.lcens(c(1, 3), 2))

mcenKM

Estimate Statistics

Description

Support function for computing statistics for multiply-censored data.

Usage

```
mcenKM(x, group)
```

Arguments

х	an object of "mcens" to compute
group	the group variable

Value

An object of class "survfit."

70

mcenMLE

Description

Support function for computing statistics for multiply-censored data extended from the maximum likelihood method (Helsel and Cohn, 1988).

Usage

mcenMLE(x, method = "MLE", alpha = 0.4)

Arguments

x	the data to estimate, Missing values permitted and ignored. Must be an object of class "mcens," a numeric vector, or the output from censpp.
method	the method to use, either "MLE" or "log MLE."
alpha	the offset for plotting position, used to compute the filled in values.

Value

A list containing the mean and standard deviation, filled in values for the censored values, and the censored levels. If method is "log MLE," then the list also contains the mean and standard deviation of the natural log-transformed values computed by maximum likelihood.

References

Helsel, D.R. and Cohn, T.A., 1988, Estimation of descriptive statistics for multiply censored water quality data: Water Resources Research v. 24, n. 12, pp.1997-2004

mcenROS

Estimate Statistics

Description

Support function for computing statistics for multiply-censored data extended from the "fill-in" probability plotting procedure method (Helsel and Cohn, 1988), now known as regression on order statistics.

Usage

mcenROS(x, method = "ROS", alpha = 0.4)

mcens-class

Arguments

х	the data to estimate, Missing values permitted and ignored. Must be an object
	of class "mcens," a numeric vector, or the output from censpp.
method	the method to use, either "ROS" or "log ROS."
alpha	the offset for plotting postion.

Value

A list containing the mean and standard deviation, filled in values for the censored values, and the censored levels. If method is "log ROS," then the list also contains the mean and standard deviation of the natural log-transformed values computed by regression on order statistics.

References

Helsel, D.R. and Cohn, T.A., 1988, Estimation of descriptive statistics for multiply censored water quality data: Water Resources Research v. 24, n. 12, pp.1997-2004

mcens-class

Mutliply-censored Data

Description

Class "mcens" describes right- or multiply-censored data.

Slots

- .Data a 2-column matrix that contains the lower and upper value for the data. Missing values are permitted.
- censor.codes an integer vector that indicates censoring; -1 indicates left-censored, 0 indicates uncensored, and 1 indicates rigth-censored. Missing values are permitted only for elements of .Data that are missing.
- interval a logical value; TRUE indicates that the value is interval censored and FALSE indicates otherwise. Missing values are permitted only for elements of .Data that are missing.

names a character vector of unique names for each element in .Data.

Objects from the Class

Objects can be created by calls to as.mcens.

Note

Note that censor.codes and interval are not necessary, but included to make some manipulations easier.

References

Lorenz, D.L., in preparation

mdlAMLE

Examples

showClass("mcens")

mdlAMLE

Estimate Statistics

Description

Support function for computing statistics for left-censored data using the adjusted maximum-likelihood method (Cohn, 1988)

Usage

mdlAMLE(x, method = "AMLE", alpha = 0.4)

Arguments

Х	the data to estimate, Missing values permitted and ignored. Must be an object
	of class "lcens," a numeric vector, or the output from censpp.
method	the method to use, either "AMLE" or "log AMLE."
alpha	the offset for plotting postion, used to compute the filled in values.

Value

A list containing the mean and standard deviation, filled in values for the censored values, and the maximum censor level. If method is "log AMLE," then the list also contains the mean and standard deviation of the natural log-transformed values computed by maximum likelihood.

References

Cohn, T.A., 1988, Adjusted maximum likelihood estimation of the moments of lognormal populations from type 1 censored samples: U.S. Geological Survey Open-File Report 88-350, 34 p.

mdlKM

Estimate Statistics

Description

Support function for computing statistics for left-censored data.

Usage

mdlKM(x, group, conf.int = 0.95)

Arguments

х	an object of "lcens" to compute.
group	the group variable.
conf.int	the confidence interval.

Value

An object of class "survfit."

mdlKMstats	Estimate Statistics

Description

Support function for computing statistics for left- and multiply censored data.

Usage

mdlKMstats(x, probs = c(0.25, 0.5, 0.75))

Arguments

х	out from mdlKM or mcenKM
probs	numeric vector of desrired probabilities

Value

A list containing summary statistics.

mdlMLE

Estimate Statistics

Description

Support function for computing statistics for left-censored data using the maximum likelihood method (Helsel and Cohn, 1988).

Usage

mdlMLE(x, method = "MLE", alpha = 0.4)

mdlROS

Arguments

x	the data to estimate, Missing values permitted and ignored. Must be an object of class "lcens," a numeric vector, or the output from censpp.
method	the method to use, either "MLE" or "log MLE."
alpha	the offset for plotting position, used to compute the filled in values.

Value

A list containing the mean and standard deviation, filled in values for the censored values, and the censored levels. If method is "log MLE," then the list also contains the mean and standard deviation of the natural log-transformed values computed by maximum likelihood.

References

Helsel, D.R. and Cohn, T.A., 1988, Estimation of descriptive statistics for multiply censored water quality data: Water Resources Research v. 24, n. 12, p.1997–2004

md1ROS

Estimate Statistics

Description

Support function for computing statistics for left-censored data using the "fill-in" probability plotting procedure method (Helsel and Cohn, 1988), now known as regression on order statistics. This method is also known as the "robust" approach (Helsel, 2012).

Usage

mdlROS(x, method = "ROS", alpha = 0.4)

Arguments

Х	the data to estimate, Missing values permitted and ignored. Must be an object
	of class "lcens," a numeric vector, or the output from censpp.
method	the method to use, either "ROS" or "log ROS."
alpha	the offset for plotting postion.

Value

A list containing the mean and standard deviation, filled in values for the censored values, and the censored levels. If method is "log ROS," then the list also contains the mean and standard deviation of the natural log-transformed values computed by regression on order statistics.

References

Helsel, D.R. and Cohn, T.A., 1988, Estimation of descriptive statistics for multiply censored water quality data: Water Resources Research v. 24, n. 12, pp.1997–2004

Helsel, D.R. 2012, Statistics for censored environmental data using Minitab and R: New York, Wiley, 324 p.

Arithmetic Mean

mean.lcens

Description

Computes the arithemtic mean. These functions return NA and are designed to stop the user from accidentally using the function mean on censored data.

Usage

```
## S3 method for class 'lcens'
mean(x, ...)
```

S3 method for class 'mcens'
mean(x, ...)

Arguments

х	the censored data object.
	not used, require for other methods.

Value

An error message.

Note

The mean and standard deviation of censored data should be computed using censStats.

See Also

censStats

mean.qw

Description

Computes the arithmetic mean of water-quality data. This function is intended primarily to compute a useful mean of a small set of data, for example to compute the mean of daily samples. See **Note**.

Usage

S3 method for class 'qw'
mean(x, lt.tol = 0.5, ...)

Arguments

х	the water-quality data object.
lt.tol	an arbitrary tolerance metric to drop interval-censoring. See Details.
	further arguments passed to or from other methods.

Details

The lt.tol argument can be used to collapse interval censored data, creating an uncensored value, when the range of interval censored data is less than lt.tol time the detection limit. This generally results in reasonable estimates of values for the intended purpose.

Value

The mean of thw water-quality data as class "qw."

Note

The mean and standard deviation of censored water-quality data should be computed using censStats.

See Also

censStats

median.lcens

Description

Computes the sample median: methods for "lcens," "mcens," and "qw" data.

Usage

```
## S3 method for class 'lcens'
median(x, na.rm = FALSE, ...)
## S3 method for class 'mcens'
median(x, na.rm = FALSE, ...)
## S3 method for class 'qw'
median(x, na.rm = FALSE, ...)
```

Arguments

Х	the censored data object.
na.rm	remove missing values before computation?
	potentially further arguments for methods; not used in the default or lcens method.

Value

A vector of length one representing the sample median.

Note

The median is computed using the flipped Kaplan-Meier method described in Helsel (2012).

References

Helsel, D.R. 2012, Statistics for censored environmental data using Minitab and R: New York, Wiley, 324 p.

See Also

censQuantile

Examples

median(as.lcens(1:4, 2))

Description

Imputes substitute values left-censored values multiple times using the data augmentation method.

Usage

```
mImputeLessThans(..., m = 10, initial = c("lrEM", "complete.obs",
    "multRepl"))
## Default S3 method:
mImputeLessThans(..., m = 10, initial = c("lrEM",
    "complete.obs", "multRepl"))
## S3 method for class 'data.frame'
mImputeLessThans(..., group = NULL, m = 10,
    initial = c("lrEM", "complete.obs", "multRepl"))
```

Arguments

	either a data frame that contains columns of class "qw" or any combination of individual vectors of class "numeric," "lcens," or "qw." Missing values are removed before processing.
m	the number of multiple imputations desired.
initial	the method to use for the initial log-ratio covariance matrix, either "lrEM" that uses expectation maximization to construct the matrix, "complete.obs" that uses only the rows with no censored data to construct the matrix, or "multRepl" that uses simple substitution of censored values to compute the matrix. See lrDA for details.
group	character string, the name of the column in the data frame to indicate a group for imputation. See Details

Details

Imputation of left-censored data requires the assumption of multivariate log-normality for a single population. If the data represent samples from multiple populations, then they should be identified by the group argument. The minimum size for any group is 3.

Value

A list of length m containing data frames with imputed censored values. If group is used, then the returned object is a tagged list with names corresponding to the values in the grouping column. Each group contains the m repititions of imputed values.

See Also

lrDA, imputeLessThans

multiply

Multiply Water-Quality Data by a Number

Description

Multiplies water-quality data by a number while maintaining the integrity of the data.

Usage

multiply(x, factor, units, analyte, analyte.method = "ALGOR", pcode = "")

Arguments

x	an object of water-quality (class "qw"). Missing value are permitted and result in corresponding missing values in the output.
factor	a single numeric value
units	character reporting units of the resulting operation, if not supplied, retained from x.
analyte	character the name of the resulting analyte.
analyte.method	character the name of the analytical method for the result, by default "ALGOR."
pcode	the parameter code of the result, if not supplied, retained from x.

Details

Multiplication is not defined for objects of class "qw" because it can change some of the metadata, in particular the units, the analytical method, or the unique identifier (pcode).

Value

An object of class "qw" that is the result of the requested operation.

nobs.censReg

Description

Extracts the number of observations from a censored regression object: method for "censReg" object.

Usage

S3 method for class 'censReg'
nobs(object, ...)

Arguments

object	an object of class "censReg"—output from censReg.
	further arguments passed to or from other methods.

Value

The number of observations used to construct the model.

See Also

censReg

pairedPratt.test Test for difference in left-censored samples

Description

Tests for differences in paired left-censored samples from two groups using Pratt's (1959) adjustment for ties.

Usage

```
pairedPratt.test(x, y, alternative = "two.sided", mu = 0, data.names)
```

Arguments

x	the paired samples to y. Forced to class "lcens." Missing values are removed before the analysis.
У	the paired values to x. Missing values are removed before the analysis.
alternative	character string describing the alternative hypothesis for (x - y compared to mu. Must be one of "two.sided," "greater," or "less."
mu	a numeric value specifying the test difference between x and y.
data.names	character string to be used to explain the data. Default names are derived from the data arguments.

Value

An object of class "htest" that inherits "ppw."

Null Hypothesis

The null hypothesis is that the distributions are not different from one another.

Note

The Pratt (1959) adjustment to the Wilcoxon signed-rank test was used by Lindsey and Rupert (2012) to evaluate decadal changes in groundwater quality. Lindsey and Rupert (2012) used a fixed reporting level (0.06, the largest among all of the data) and used a simple substitute value 0.0599 for the censored values. The approach in pairedPratt.test is to recensor values at the largest reporting limit, use one-half that value as the simple substitute and round differences greater than the simple substitute value to multiples of the largest reporting limit; nonzero differences less than or equal to the simple substitute value are rounded to that value. That rounding scheme eliminates the ambiguity of comparing interval values created by the difference between a censored value and an uncensored value.

A plot method is supported for the returned object.

References

Lindsey, B.D., and Rupert, M.G., 2012, Methods for evaluating temporal groundwater quality data and results of decadal-scale changes in chloride, dissolved solids, and nitrate concentrations in groundwater in the United States, 1988–2010: U.S. Geological Survey Scientific Investigations Report 2012–5049, 46 p.

Pratt, J.W., 1959, Remarks on zeros and ties in the Wilcoxon signed rank procedures: Journal of the American Statistical Association, v. 54, no. 287 p. 655–667.

See Also

ppw.test,lcens-class

pcodeColData

Examples

```
# Compare uncensored results
set.seed(699)
Xu <- sort(rlnorm(22, 0, 1))
Yu <- sort(rlnorm(22, .425, 1))
# Treat as paired samples
pairedPratt.test(Xu, Yu)
wilcox.test(Xu, Yu, paired=TRUE)
# The differences in the p-values are due to use of approximate p-value for
# the Pratt test
```

pcodeColData Selected USGS parameter Codes

Description

Selected U.S. Gelogical Survey (USGS) parameter codes to create column names and data type conversion when importing data from NWISweb

Usage

pcodeColData

Format

Data frame with 1178 rows and 3 columns

Name	Туре	Description
parm_cd	character	The 5-digit parameter code
col_name	character	The column name to use when importing data from NWISweb
data_type	character	The data type to convert the imported data

Note

This data set can be copied and modifed by the user to add or change column names. The data_type must be either "qw" or "numeric" any other value will be ignored.

References

Lorenz, D.L., 2016, smwrQW—An R Package for Managing and Analyzing Water-Quality Data, Version 0.7.3

Examples

```
data(pcodeColData)
# just print some rows
head(pcodeColData)
tail(pcodeColData)
```

pcodeNWISqw

Description

Returns information about parameter codes. Support function for importNWISqw.

Usage

```
pcodeNWISqw(params = "all", group = TRUE, name = TRUE, CASRN = FALSE,
short = TRUE, units = TRUE, col.name = FALSE)
```

Arguments

params	A character string contains the name of a group of parameter codes, or a vector of pamater codes. See Details .
group	include the parameter group in the output?
name	include the parameter name in the output?
CASRN	include the parameter Chemical Abstracts Service Registry Number (CASRN) in the output?
short	include the parameter short name in the output?
units	include the parameter units in the output?
col.name	include a column name for the parameter in the output?

Details

Valid groups for param are "All," "INF," "PHY," "INM," "INN," "NUT," "MBI," "BIO," "IMN," "IMM," "TOX," "OPE," "OPC," "OOT," "RAD," "SED," or "POP."

Value

A data frame with the parameter codes and the selected columns.

References

Lorenz, D.L., 2014, smwrQW OFR. See information about discrete samples at https://nwis.waterdata.usgs.gov/usa/nwis/qw.

See Also

readNWISpCode

pctCens

Examples

Not run:
pcodeNWISqw("00925")

End(Not run)

pctCens

Percent Censored

Description

Computes the percentage of censoring ("left," "right," or "multiple") for an object.

Usage

pctCens(x, type = "multiple")

Arguments

Х	the object to compute the percentage of censoring. Missing values are permitted and removed before computing the percentage,
type	the type of censoring desired. For "left," only the percent of left-censored data is computed. For "right," only the percent of right-censored data is computed. For "multiple," the percentage of left-, right-, and interval-censored data is returned.

Value

The percentage of the kind of censoring specified by type is returned. Zero is returned if all data are missing!

Note

This function will work for any type of data that has a method for censoring and as.mcens.

See Also

censoring

Examples

pctCens(as.lcens(c(1:5, NA), 2)) # left-censored

percentile.lcens Empirical Cumulative Percent

Description

Computes the empirical cumulative percent or percent exceedance of observed data for specific values: methods for "lcens" and "qw" data.

Usage

```
## S3 method for class 'lcens'
percentile(x, q, test = ">=", na.rm = TRUE,
    percent = TRUE, exact = TRUE, ...)
## S3 method for class 'qw'
percentile(x, q, test = ">=", na.rm = TRUE, percent = TRUE,
    exact = TRUE, ...)
```

Arguments

х	a vector of class "lcens" or "qw" representing the observed data.
q	a vector of numeric quantiles for which the cumulative percent or percent exceedence is desired.
test	a character string indicating the test. The default value, '>=,' is the percent equalling or exceeding the quantile and '<' would return the cumulative percent below the quantile.
na.rm	a logical value indication whether missing values (NAs) should be removed or not. If na.rm is FALSE and there are missing values in x, then the result will be NA. The default value is TRUE.
percent	a logical value indicating whether the result should be expressed as a percent or proportion. The default value, TRUE, will express the result as a percent.
exact	logical, if TRUE, then force strict comparisons. Any other value is ignored in the current version.
	not used, required for method function

Value

A named vector as long as q corresponding to the requested value.

Note

The stats package contains the ecdf function that performs a similar function when test is "<=."

See Also

ecdf

plot.censReg

Examples

```
set.seed(2342)
Xr <- rlnorm(24)
# The percentage of the observarions greater than or equal to 2
percentile(as.lcens(Xr, 2), 1:5)
# Compare to the raw data:
percentile(Xr, 1:5)</pre>
```

plot.censReg

Diagnostic Plot

Description

Plot simple AMLE/MLE model diagnostics.

Usage

```
## S3 method for class 'censReg'
plot(x, which = "All", set.up = TRUE, ...)
```

Arguments

Х	an object of class "censReg"—output from censReg
which	either "All," 1, or 2 indicating which plot, see Details.
set.up	set up the graphics page?
	further arguments passed to or from other methods.

Details

Two graphs can be produced by this function. Number 1 is a plot of fitted versus actual and number 2 is a Q-normal plot. More complete diagnostic plots are available from the summary.censReg output.

Value

The object x is returned invisibly.

See Also

censReg

plot.ppw

Description

Create diagnostic plots for selected hypothesis tests.

Usage

```
## S3 method for class 'ppw'
plot(x, which = "All", set.up = TRUE, labels, ...)
## S3 method for class 'genWilcox'
plot(x, which = "All", set.up = TRUE,
    xaxis.log = TRUE, ...)
```

Arguments

x	an object having classes "htest" and some other class for which a plot method exists.
which	either "All" or an number indicating which plot, see Details .
set.up	set up the graphics page?
labels	use supplied values for y-axis labels instead of sequence number.
	not used, arguments passed to or from other methods.
xaxis.log	draw the x-axis on a logarithimic scale?

Details

The ppw method for plot creates 2 graphs on a single page. The first graph is the scaled differences from the PPW test with the mean difference shown by a blue line. The second graph is the actual differences in the paired values, assuming that the true minimum for left-censored data is 0. The median difference is shown by a blue line.

The genWilcox method creates a single graph that shows the emprical cumulative distributions for each group.

Value

The object x is returned invisibly.

plot.qw

Description

Create a diagnostics plot of the reporting levels and observations

Usage

S3 method for class 'qw'
plot(x, which = "All", set.up = TRUE, ...)

Arguments

х	an object of class "qw."
which	which plot, ignored in current version.
set.up	set up the graphics page?
	additional arguments passed to xyPlot.

Value

A plot is created and the data are invisibly returned.

See Also

timePlot-censored

Examples

see vignettes

plot.summary.censReg Diagnostic Plot

Description

Plot summary AMLE/MLE model diagnostics.

Usage

```
## S3 method for class 'summary.censReg'
plot(x, which = "All", set.up = TRUE, span = 1,
    ...)
```

Arguments

x	an object of class "censReg"—output from censReg
which	either "All" or any of a sequence from 1 to 7 indicating which plot, see Details .
set.up	set up the graphics page?
span	the span to use for the loess smooth. Set to 0 to suppress.
	further arguments passed to or from other methods.

Details

Seven graphs can be produced by this function. If which is "All," then all plots are produced. The argument which can also be the name of an explanatory variable so that a partial residual plot is created for a single variable. Or which can be any of a sequence of numbers from 1 thorugh 7. Numeric values for which:

- 1. Fitted vs. Observed
- 2. Fitted vs. Residual
- 3. S-L plot
- 4. A correlogram if dates are available in the model or in the data set
- 5. Q-normal plot
- 6. Influence plot
- 7. Partial residual plots for each explanatory variable

Value

The object x is returned invisibly.

Note

The q-normal plot (number 5) plots the working residuals and portrays fits for relatively small percentages of censoring very well. For larger percentages of censoring, the q-normal plot in plot.censReg (number 2) can portray the normality of the residuals more accurately.

See Also

censReg,plot.censReg

роw

Description

Raises censored data to a positive power.

Usage

pow(x, lambda, out = "Auto")

Arguments

x	any object that can be converted to class "mcens" or "lcens." Must be non neg- ative (zero data are permitted). Missing values are permitted and missing vlues in the returnned vector.
lambda	the power to raise x. Must be strictly positive.
out	the output format, must be one of "numeric," "lcens," "mcens," or "Auto." If "Auto," then if x is class "numeric," then the output format is "numeric" other- wise the output format is "mcens."

Value

An object of class "mcens" that is the result of the requested operations. Each of the range of the lower and upper values are raised to the power of lambda and the result divided by lambda to approximately maintain scale. But the reciprocal value of lambda cannot be used to restore the original values.

Examples

```
pow(as.mcens(c(0,2), c(1,2)), 2)
pow(as.mcens(c(0,2), c(1,2)), .5)
# Numeric values
pow(c(1,3), 2)
```

ppw.test

Test for difference in left-censored samples

Description

Tests for differences in paired left-censored samples from two groups using the PPW test (O'Brien and Fleming, 1987).

Usage

ppw.test(x, y, alternative = "two.sided", OBrienFleming = TRUE, data.names)

Arguments

x	the paired samples to y. Forced to class "lcens." Missing values are removed before the analysis.
У	the paired values to x. Missing values are removed before the analysis.
alternative	character string describing the alternative hypothesis. Must be one of "two.sided," "greater," or "less."
OBrienFleming	logical, if TRUE, then apply the OBrienFleming otherwise it is not applied. See Details .
data.names	character string to be used to explain the data. Default names are derived from the data arguments.

Details

The O'Brien-Fleming adjustment forces the score for all paired censored values to be equal to each other. It also forces equality between observed values that are less than the detection limit in the paried sample by setting the value to less than the detection limit.

Value

An object of class "htest" that inherits "ppw."

Null Hypothesis

The null hypothesis is that the distributions are not different from one another.

Note

The ppw.test function uses the survfit function. Helsel (2012) describes flipping the leftcensored data so that small values become large and left-censored values become right-censored values and adapt nonparametric techniques from survival analysis. A plot method is supported for the returned object.

References

Helsel, D.R. 2012, Statistics for Censored Environmental Data Using Minitab and R: New York, Wiley, 324 p.

O'Brien, P.C. and Fleming, T.R., 1987, A paired Prentice-Wilcoxon test for censored paried data: Biometrics, v. 43, p. 451–455.

See Also

survdiff, survfit, lcens-class

predict.censReg

Examples

```
# Compare uncensored results
set.seed(699)
Xu <- sort(rlnorm(22, 0, 1))
Yu <- sort(rlnorm(22, .425, 1))
# Treat as paired samples
ppw.test(Xu, Yu)
wilcox.test(Xu, Yu, paired=TRUE)</pre>
```

predict.censReg Predict Values

Description

Predicts values from a censored regression object: method for "censReg" object.

Usage

```
## S3 method for class 'censReg'
predict(object, newdata, type = c("response", "link",
    "mean"), se.fit = c("none", "estimate", "prediction"),
    interval = c("none", "confidence", "prediction"), level = 0.95,
    na.action = na.pass, ...)
```

Arguments

object	the output from censReg.
newdata	an optional data frame in for predictions. If omitted, the observations from object are used.
type	the type of predicted value. To get predictions on the original scale of the re- sponse, use "response." To get predictions on the transformed scale of the re- sponse, use "link." To get the mean predictions for log-normal data, use "mean."
se.fit	the type of standard errors of the predicted value to include in the result.
interval	type type of interval calculation. See Details.
level	the confidence or prediction interval.
na.action	function determining what should be done with missing values in newdata. The default is to predict NA.
	further arguments passed to or from other methods.

Details

Some combinations of type and se.fit and interval are not possible, depending on the distribution of the model. If type is "link" or the distribution is normal, then all combinations are possible. the value for type may be "mean" only if the distribution is log-normal, and the only additional option is "estimate" for se.fit. For either log-normal or common log distributions, if the type is "response," then the options for se.fit and interval ae "none" or "prediction."

Value

A vector of predictions or a matrix of predictions and the other selected statistics. In contrast with other regression predict functions, a list of fitted values and standard errors is never returned.

Note

The predicted value for type = "mean" uses the adjusted maximum likelihood method for bias correction described by Cohn (1988) and Cohn and others (1992). that method will give sligthly different predicted values than the minimum variance unbiased estimate (MVUE) described by Bradu and Mundlak (1970).

References

Bradu, D., and Mundlak, Y. 1979, Estimation in lognormal linear models: Journal of the American Statistical Association, v. 65, no. 39, p. 198–211.

Cohn, T.A., 1988, Adjusted maximum likelihood estimation of the moments of lognormal populations form type I censored samples: U.S. Geological Survey Open-File Report 88-350, 34 p. Cohn, T.A., Gilroy, E.J., and Baier, W.G., 1992, Estimating fluvial transport of trace constituents using a regression model with data subject to censoring: Proceeding of the Joint Statistical Meeting, Boston, August 9–13, 1992, p. 142–151.

See Also

censReg, predictMVUE

Description

Print the results of multiple nonparametric comparison tests among groups of left-censored data.

Usage

S3 method for class 'censMCT'
print(x, digits = 4, ...)

Arguments

х	an object of class "censMCT"—output from censMulticomp.test
digits	the number of significant digits to print
	further arguments passed to or from other methods.

Value

The object x is returned invisibly.

print.censQuantile

Note

The printed output includes the name of the test, the error rate, the method for adjusting the p-values for the individual tests, the names of the response and group variables, and a table of the paired comparisons. The table includes the names of the groups comapred, the z-score from the genWilcox.test, the adjusted p-value, and a column to indicate if the adjusted p-value is less than the alpha level set in censMulticomp.test.

See Also

censKSample.test, censMulticomp.test, genWilcox.test

print.censQuantile Print Results

Description

Print the output of censQuantile.

Usage

S3 method for class 'censQuantile'
print(x, digits = 4, ...)

Arguments

х	an object of class "censQuantile."
digits	the number of significant digits to print
	further arguments passed to or from other methods.

Value

The object x is returned invisibly.

Note

The printed output appears as 2 columns, the first column is the percentile and the second column is the value.

print.censReg Print Results

Description

Print the results of an AMLE/MLE regression.

Usage

S3 method for class 'censReg'
print(x, digits = 4, ...)

Arguments

х	an object of class "censReg"—output from censReg
digits	the number of significant digits to print
	further arguments passed to or from other methods.

Value

The object x is returned invisibly.

Note

The printed output includes the call, the coefficent table, the estimated residual standard error, the log-likelihood of the model and null model with the attained p-value, and the computational method.

See Also

censReg, coef.censReg

print.censStats Print Results

Description

Print the output of censStats.

Usage

```
## S3 method for class 'censStats'
print(x, digits = 4, ...)
```

print.lcens

Arguments

х	an object of class "censStats."
digits	the number of significant digits to print
	further arguments passed to or from other methods.

Value

The object x is returned invisibly.

Note

The printed includes the mean and standard deviation of the data and if a log-transform was used in the computation, then the mean and standard deviation of the log-transformed values.

|--|

Description

Print representations of censored or water-quality data values.

Usage

```
## S3 method for class 'lcens'
print(x, digits = 4, ...)
## S3 method for class 'mcens'
```

print(x, digits = 4, ...)

S3 method for class 'qw'
print(x, ...)

Arguments

х	the object to print.
digits	the number of significant digits for numbers.
	further arguments passed to or from other methods.

Value

The object x is returned invisibly.

print.summary.censReg Print Results

Description

Print the summary output of an AMLE/MLE regression.

Usage

S3 method for class 'summary.censReg'
print(x, digits = 4, ...)

Arguments

х	an object of class "censReg"—output from censReg
digits	the number of significant digits to print
	further arguments passed to or from other methods.

Value

The object x is returned invisibly.

Note

The printed output includes the call, the coefficent table, the estimated residual standard error, the log-likelihood of the model and null model with the attained p-value, and the computational method.

See Also

censReg, coef.censReg

probPlot.lcens Probability Plot

Description

Produces a probability plot: methods for "lcens" and "qw" data.

probPlot.lcens

Usage

```
## S3 method for class 'lcens'
probPlot(x, truncate, FLIP = FALSE, distribution = "normal",
  alpha = 0.4, Plot = list(name = "Uncensored", what = "points", type =
  "solid", width = "standard", symbol = "circle", filled = TRUE, size = 0.09,
  color = "black"), yaxis.log = TRUE, yaxis.range = c(NA, NA),
 ylabels = 11, xlabels = 11, CDF = TRUE,
 xtitle = "Cumulative Probability", RI, RItitle,
 ytitle = deparse(substitute(x)), caption = "", margin = c(NA, NA, NA,
 NA), Censored = list(name = "Left censored", what = "points", symbol =
  "circle", filled = FALSE, size = 0.09, color = "black"), ...)
## S3 method for class 'qw'
probPlot(x, truncate, FLIP = FALSE, distribution = "normal",
  alpha = 0.4, Plot = list(name = "Uncensored", what = "points", type =
  "solid", width = "standard", symbol = "circle", filled = TRUE, size = 0.09,
  color = "black"), yaxis.log = TRUE, yaxis.range = c(NA, NA),
 ylabels = 11, xlabels = 11, CDF = TRUE,
  xtitle = "Cumulative Probability", RI, RItitle,
 ytitle = deparse(substitute(x)), caption = "", margin = c(NA, NA, NA,
 NA), Censored = list(name = "Left censored", what = "points", symbol =
  "circle", filled = FALSE, size = 0.09, color = "black"), ...)
```

Arguments

х	the data to plot. Missing values are removed before plotting.
truncate	not used for left-censored data.
FLIP	if TRUE, the plot the cumumlative distribution. Otherwise, plot as flipped data (largest values on left). This is not related to computing statistics by the flipped Kaplan-Meier method.
distribution	the name of the desired function converting from probabilities to coordinates.
alpha	the alpha value of the function for computing plotting positions.
Plot	control parameters of the uncensored data plot.
yaxis.log	log-transform the y axis?
yaxis.range	set the range of the y axis.
ylabels	set the y-axis labels. See linearPretty for details.
xlabels	set the x-axis labels. See probPretty for details.
CDF	if TRUE, then label with increasing probabilities. Otherwise label with decreasing probabilities.
xtitle	the x-axis title.
RI	not used for left-censored data.
RItitle	not used for left-censored data.
ytitle	the y-axis title.
caption	the figure caption.

margin	the parameters of the margin of the plot area.
Censored	control parameters of the left-censored data plot.
	parameters for the distribution function or other method functions.

Details

The control parameters for left-censored data, Censored, are the same as those for uncensored data, Plot. See setPlot for details.

Value

Information about the graph.

See Also

qqPlot.lcens

Examples

```
## Not run:
set.seed(1932)
Xu <- rlnorm(32)
setPage("sq") # required page set up
probPlot(as.lcens(Xu, 1.0))
```

End(Not run)

qqPlot.lcens Q-Q Plot

Description

Produces a quantile-quantile (q-q) or a q-normal plot: methods for "lcens" and "qw" data.

Usage

```
## S3 method for class 'lcens'
qqPlot(x, y, alpha = 0.4, Plot = list(name = "", what =
    "points", type = "solid", width = "standard", symbol = "circle", filled =
    TRUE, size = 0.09, color = "black"), LineRef = list(name = "", what =
    "lines", color = "black"), Line1.1 = list(name = "Line of equality", what =
    "lines", color = "gray"), yaxis.log = FALSE, yaxis.range = c(NA, NA),
    xaxis.log = FALSE, xaxis.range = c(NA, NA), ylabels = 7, xlabels = 7,
    xtitle, ytitle, caption = "", margin = c(NA, NA, NA, NA),
    Censored = list(name = "", what = "points", symbol = "circle", filled =
    FALSE, size = 0.09, color = "black"), Projected = list(name = "", what =
    "points", symbol = "plus", filled = FALSE, size = 0.09, color = "black"), ...)
```

```
## S3 method for class 'qw'
qqPlot(x, y, alpha = 0.4, Plot = list(name = "", what =
    "points", type = "solid", width = "standard", symbol = "circle", filled =
    TRUE, size = 0.09, color = "black"), LineRef = list(name = "", what =
    "lines", color = "black"), Line1.1 = list(name = "Line of equality", what =
    "lines", color = "gray"), yaxis.log = FALSE, yaxis.range = c(NA, NA),
    xaxis.log = FALSE, xaxis.range = c(NA, NA), ylabels = 7, xlabels = 7,
    xtitle, ytitle, caption = "", margin = c(NA, NA, NA, NA),
    Censored = list(name = "", what = "points", symbol = "circle", filled =
    FALSE, size = 0.09, color = "black"), Projected = list(name = "", what =
    "points", symbol = "plus", filled = FALSE, size = 0.09, color = "black"), ...)
```

Arguments

x	the x-axis data, or data to plot if y is missing. Must be of class "lcens," "mcens," or "qw." Missing values are permitted and removed bedfore plotting.
У	the y-axis data. Missing values are permitted and removed bedfore plotting. If missing, then produce a quantile-normal plot from the data in x.
alpha	the alpha value of the function for computing plotting positions.
Plot	control parameters of the uncensored data plot.
LineRef	control parameters of the reference line (best fit between x and y. See Details .
Line1.1	control parameters for the 1:1 line. Drawn only for q-q plot. See Details.
yaxis.log	log-transform the y axis?
yaxis.range	set the range of the y axis.
xaxis.log	log-transform the x axis?
xaxis.range	set the range of the x axis.
ylabels	set the y-axis labels. See linearPretty for details.
xlabels	set the x-axis labels. See linearPretty for details.
xtitle	the x-axis title.
ytitle	the y-axis title.
caption	the figure caption.
margin	the parameters of the margin of the plot area.
Censored	control parameters of the censored values q-normal plot.
Projected	control parameters of the projected (filled in) left-censored data q-normal plot.
	any additional arguments required for specific methods.

Details

The argument what for either LineRef or Line1.1 may be set to "none" to suppress drawing of either line.

Value

Information about the graph.

See Also

probPlot.lcens

Examples

```
## Not run:
set.seed(1932)
Xu <- rlnorm(32)
setPage("sq") # required page set up
qqPlot(as.lcens(Xu, 1.0), yaxis.log=TRUE)
```

End(Not run)

quantile.lcens Sample Quantiles

Description

Computes sample or estimated quantiles corresponding to the given probabilities: methods for "lcens," "mcens," and "qw" data. The smallest observation (censored or uncensored) corresponds to a probability of 0 and the largest to a probability of 1.

Usage

```
## S3 method for class 'lcens'
quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE,
    names = TRUE, method = "flipped K-M", type = 2, alpha = 0.4, ...)
## S3 method for class 'mcens'
quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE,
    names = TRUE, method = "flipped K-M", type = 2, alpha = 0.4, ...)
## S3 method for class 'qw'
quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE,
    names = TRUE, method = "flipped K-M", type = 2, alpha = 0.4, ...)
```

Arguments

х	an object of a censored-data class whose sample quantiles are wanted. NA and NaN values are not allowed unless na.rm is TRUE.
probs	numeric vector of probabilities with values in [0,1].
na.rm	logical; if TRUE, any NA and NaNs are removed from x before the quantiles are computed.
names	logical; if true, the result has a names attribute.
method	the method to use for computing quantiles. See Details .

102

qw-class

type	an integer between 1 and 9 selecting one of the nine quantile algorithms de- scribed in quantile.
alpha	the offset fraction to be used, depending on method; typically in $[0, 0.5]$.
	not used, required for other methods.

Details

The methods available in the current version are "flipped K-M," "log ROS," "ROS," "log MLE," and "MLE." The method "flipped K-M" produces quantiles using the Kaplan-Meier method on flipped data described by Helsel (2012). The methods "log ROS" and "log MLE" are described by Helsel, 2012 and Helsel and Cohn (1988). The methods "ROS" and "MLE" are similar to "log ROS" and "log MLE" except that no log- and back-transforms are made on the data.

Value

An optionally named vector of the requested probabilities. The names of values that would be left-censored are marked with "*."

References

Helsel, D.R. 2012, Statistics for censored environmental data using Minitab and R: New York, Wiley, 324 p.

Helsel, D.R. and Cohn, T.A., 1988, Estimation of descriptive statistics for multiply censored water quality data: Water Resources Research v. 24, n. 12, pp. 1997-2004

See Also

quantile, censQuantile

Examples

```
set.seed(28)
Xu <- rnorm(23)
quantile(as.lcens(Xu, 0))</pre>
```

qw-class

Water-quality Data

Description

Class "qw" describes water-quality data.

- .Data a 2-column matrix that contains the lower and upper limit of the value of the water-quality data. Missing values are permitted.
- remark.codes a character vector of remark codes. Only "<" and ">" are meaningful for the class; other values will be ignored, but may generate warnings. Missing values are permitted only for corresponding missing values in .Data.
- value.codes a character vector for user-defined code that may help characterize the value of the water-quality data. Missing values are permitted only for corresponding missing values in .Data.
- reporting.level a numeric vector describing the reporting level of the water-quality data. Missing values are permitted if the reporting level is not known.
- reporting.method a character vector for user-defined code or description of the reporting.level. Generally used to distinguish between detection limits and quantitation levels.
- reporting.units a character vector describing the units. Some values, like "mg/L" are recognized by some applications.
- analyte.method a character vector to describe the analytical method.
- analyte.name a character vector of the analyte name. Some values may be recognized by some applications.
- rounding a vector of length 2 that describes how to round the data for printing. The first value is the number of significant digits, the second is the maximum number of decimal places, default is c(2,3).
- unique.code a character vector that defines a distinct collection of data. Typically used to define columns is datasets organized by sample.

names a character vector of unique names for each element in .Data.

Objects from the Class

Objects can be created by calls to as.qw.

References

Lorenz, D.L., in preparation

Examples

showClass("qw")

Slots

qw2mcens

Description

Converts objects of class "qw" to "mcens" retaining interval censoring for "less-than" data.

Usage

qw2mcens(x)

Arguments

х

an object of class "qw" to convert.

Value

A vector of the data converted to class "mcens" retaining interval censoring for "less-than" data.

See Also

as.mcens

qwCoalesce Replace missing values

Description

Constructs a vector with as few missing values as possible from a selected sequence of vectors.

Usage

```
qwCoalesce(..., means = FALSE, lt.tol = 0.1)
```

Arguments

	any number of objects of class "qw." Missing values are permitted.
means	logical, if TRUE, then compute the mean of all nonmissing values in the data sepcified in if FALSE, then select the first nonmissing value the sequence spcified in
lt.tol	an arbitrary tolerance metric to drop interval-censoring. See mean.qw for details.

Value

For means set to FALSE, an object of class "qw" in which each element is determined by selecting the first non-missing value in the order in which they are specified in the argument list. The first step is to construct a matrix from all arguments. The output is initially set to column 1; for any missing values in the column, the data from column 2 are used and so on until all columns have been searched or all missing values replaced. The metadata are set from the corresponding column.

For means set to FALSE, an object of class "qw" computed from the mean of the nonmissing values in each row of the data specified in The metadata, except for reporting limit information, are set from the first entry in

Note

This function is most useful for creating a column in a dataset from related columns that represent different methods. For example, a single column of alkalinity may be desired when there are multiple columns of alkalinity determined by various methods.

qwRPD

Relative Differences

Description

Computes the relative percent differences (RDP) between samples and replicates for data of class "qw."

Usage

qwRPD(x, y, incomparables = NA, plotit = FALSE)

Arguments

x	sample data of class "qw."
У	replicate data of class "qw."
incomparables	logical, NA means the RPD for any pair that includes left-censored values is NA (default), FALSE means the RPD for any pair that includes left-censored values is the minimum possible value, and TRUE means the RPD for any pair that includes includes left-censored values returns the range of possible values. See Notes.
plotit	logical, if TRUE, then create a Bland-Altman mean-difference plot (Bland and Altman, 1986); otherwise no plot is created. If incomparables is set to TRUE, then the values corresponding to the respective maximums are plotted.

Value

A vector of the relative percent differences for each paired sample and duplicate. If incomparables is TRUE, then the vector is class "mcens," otherwise the vector id numeric.

106

ratio

Note

This function works differently from other functions that process data of class "qw"—it ignores the reporting level information and uses the data as they are recorded. The treatment of intervalcensored data varies depending on incomparables. If incomparables is set to NA or FALSE, then interval-censored data are set to the midrange, otherwise the data are retained as interval-censored data. Right-censored data always return NA regardless of incomparables.

Inverval-censored data are not common and require much additional processing to get accurate ranges for the RPD. Approximate values are returned in this version.

References

Bland J.M. and Altman D.G., 1986 Statistical methods for assessing agreement between two methods of clinical measurement: Lancet, i, p. 307–310.

See Also

rpd

ratio

Compute Ratios

Description

Computes ratios from water-quality or other data and maintain the integrity of the data, as opposed to methods that use simple substitution

Usage

```
ratio(numerator, denominator)
```

Arguments

numerator	any valid vector that can be converted to class "mcens." Missing values are per- mitted but result in missing values in the output.
denominator	any valid vector that can be converted to class "mcens." Missing values are per- mitted but result in missing values in the output.

Details

Objects of class "qw" are converted to class "mcens" using the qw2mcens function, which preserves the minimum value of 0 for "less than" data rather than as.mcens, which converts the to left-censored values.

Value

An object of class "mcens" that is the result of the requested division.

rbindQW

Description

Combines a sequence of data frame arguments and combine by rows. This is a specialized version of rbind that works for data frames that contain columns of class "qw."

Usage

rbindQW(...)

Arguments

```
. . .
```

any number of data frames with identical columns. The missing value NA is permitted as a special case to allow the addition of missing values.

Value

A data frame with all columns combined in the order specified in

See Also

rbind

readNWQLd1

Historical Reporting Limits

Description

Imports the historical reporting limits for all methods for a parameter code.

Usage

```
readNWQLdl(parm_cd)
```

Arguments

parm_cd the parameter code.

Value

A data frame of the analyte, methods, begin and end date for each reporting level change, the reporting level type used, the long-term detection limit and the reporting level.

residuals.censReg

Note

This function works only within the internal USGS network.

References

Lorenz, D.L., 2014, USGSqw OFR.

See Also

qw-class

Examples

```
## Not run:
readNWQLdl("00608")
```

End(Not run)

residuals.censReg Extract Model Residuals

Description

Extracts the residuals from a censored regression object: method for "censReg" object.

Usage

```
## S3 method for class 'censReg'
residuals(object, type = "working",
    suppress.na.action = FALSE, ...)
```

Arguments

object	an object of class "censReg"—output from censReg
type	The type of residuals, see Details .
suppress.na.action	
	logical, suppress the effects of the na.action in the call to censReg and return only the fitted values corresponding to the fitted data.
	further arguments passed to or from other methods.

rmse.censReg

Details

The value for type can be any one of the following:

Value	Description
"working"	Residuals with censored residuals replaced by their expected values
"response"	Residuals from the linear predictor
"influence"	An estimate of Cook's D values based on "working" residuals
"leverage"	The hat diagonals
"S-L"	The square-root of the absolute value of the residuals with censored residuals replaced by their expected value

Also, any other value of type for residuals.survreg can be used to obtain those residuals. Note that "working" and "response" are defined in the table above, in keeping with older versions of censReg.

Value

The residuals from the regression as specified by type.

See Also

censReg

rmse.censReg

Root-Mean-Squared Error

Description

Computes the root-mean-squared error (RMSE) of a censored regression object: method for "censReg" object.

Usage

S3 method for class 'censReg'
rmse(x, ...)

Arguments

Х	the output from censReg.
	further arguments passed to or from other methods.

Value

The estimated root-mean-squared error, also know as the residual standard error.

See Also

censReg

sdlFill

Description

Support function for computing statistics for left-censored data.

Usage

sdlFill(x, method = "fill", alpha = 0.4)

Arguments

х	the data to estimate, Missing values permitted and ignored. Must be an object of class "lcens," a numeric vector, or the output from censpp.
method	the method to use, either "fill" or "log fill"
alpha	the offset for plotting postion (not used, required for other methods).

Value

A list containing the mean and standard deviation, filled in values for the censored values, and the maximum censor level.

Note

This function uses the method of Gleit (1985). That method computes the mean and standard deviation of the data, estimates synthetic values for the censored values using a method similar to ROS, and repeats the process until the mean and standard deviation stabilize.

References

Gleit, A., 1985, Estimation for small normal data sets with detection limits: Environmental Science and Technology, v. 19, no. 12, p. 1201–1206.

show-censored

Show Methods for WSqw objects

Description

Prints the object.

Usage

```
## S4 method for signature 'lcens'
show(object)
## S4 method for signature 'mcens'
show(object)
## S4 method for signature 'qw'
show(object)
```

Arguments

object the object to show.

Value

The object is retruned invisibly.

sort.lcens Sorting Vectors

Description

Sorts a vector into ascending or descending order: methods for "lcens" and "mcens" data. This function sorts left-censored values immediately below the equivalent uncensored values and right-censored values immediately above the equivalent uncensored values.

Usage

```
## S3 method for class 'lcens'
sort(x, decreasing = FALSE, na.last = NA, ...)
## S3 method for class 'mcens'
sort(x, decreasing = FALSE, na.last = TRUE, ...)
```

Arguments

х	the data to be sorted.
decreasing	sort the data in descending order?
na.last	for controlling the treatment of NAs. If TRUE, then missing values in the data are put last; if FALSE, then they are put first; if NA, then they are removed.
	arguments to be passed to or from methods.

Value

An object like x, but with the data sorted. Left-censored values are placed between smaller numeric values and the corresponding uncensored values.

splitQual

Examples

```
set.seed(5422)
XR <- rnorm(10)
sort(as.lcens(XR, rep(c(0, -1), each=5))) # censors at 0 and -1</pre>
```

splitQual

Split Leading Qualifiers

Description

Splits a vector of strings of combined data into numeric and remark columns.

Usage

```
splitQual(x, name = deparse(substitute(x)))
```

Arguments

Х	a character vector, missing values are permitted and result in missing values in
	the output
name	a character string giving the names of the output columns.

Value

A data frame with 2 columns, containing the numeric values and the qualification codes.

Examples

splitQual(c("<1", "1", "<1", "1", "2"), name="Dummy")</pre>

str.lcens

Display Structure

Description

Displays the basic information about an object: methods for "lcens," "mcens," and "qw" data.

Usage

```
## S3 method for class 'lcens'
str(object, ...)
## S3 method for class 'mcens'
str(object, ...)
## S3 method for class 'qw'
str(object, ...)
```

Arguments

object	an object of class "lcens,", "mcens," or "qw."
•••	any additional valid arguments of the default method for str and give.censoring, a logical value that includes the type of censoring in the output if TRUE.

Value

Nothing is returned, the side effect is to print a short summary of the object.

See Also

str

Examples

```
str(as.lcens(c(1,3), 2))
```

summary.censReg Summarizing Linear Model Fits

Description

Summarizes the output from a censored regression object: method for "censReg" object.

Usage

```
## S3 method for class 'censReg'
summary(object, correlation = FALSE, ...)
```

Arguments

object	an object of class "censReg"—output from censReg.
correlation	include the correlation matrix of the estimated parameters?
	further arguments passed to or from other methods.

Value

An object of class "summary.censReg" containing the object, the pseudo R-squared, variance inflation factors, a table of diagnostic statistics, critical values for selected diagnostic statistics, an indication of which observations exceed any of the selected diagnostic statistics, and optionally the parameter correlation matrix.

summary.lcens

Note

The pseudo R-squared is computed using the McKelvey-Zavoina (1975) method, which tries to describe the proportion of variance explained by the fit and tries to capture the square of the correlation between the fitted and actual values. For uncensored data, it is equal to the usual R-squared for ordinary least squares.

References

McKelvey, R.D., and Zavoina, W., 1975, A statistical model for the analysis of ordinal dependent variables: The Journal of Mathematical Sociology, v. 4, no. 1, p. 103–120.

See Also

censReg

summary.lcens Summarize Data

Description

Provide a summary of censored or water-quality data.

Usage

S3 method for class 'lcens'
summary(object, ...)

S3 method for class 'mcens'
summary(object, ...)

S3 method for class 'qw'
summary(object, details = FALSE, ...)

Arguments

object	the object to summarize.
	further arguments passed to other methods.
details	provide details on multiple entries?

Value

For details = FALSE, a named character vector describe some characteristics of object. For details = TRUE, a named list containing vectors with all unique values.

Note

This function is used when summary is called on a data frame. Setting details to TRUE can be useful for individual columns in a data frame.

Examples

```
## Not run:
# Summrize these data
summary(importNWISqw("05330000", "00608"))
```

End(Not run)

timePlot-censored Censored Data Methods for Function timePlot

Description

Creates a plot of time-series data: selected methods for "lcens" and "qw" data.

Usage

```
## S4 method for signature 'Date,lcens'
timePlot(x, y, Plot = list(name = "", what = "points",
 type = "solid", width = "standard", symbol = "circle", filled = TRUE, size =
 0.09, color = "black"), yaxis.log = FALSE, yaxis.rev = FALSE,
 yaxis.range = c(NA, NA), xaxis.range = range(x, na.rm = TRUE),
 ylabels = 7, xlabels = "Auto", xtitle = "",
 ytitle = deparse(substitute(y)), caption = "", margin = c(NA, NA, NA,
 NA), Censored = list(name = "", what = "points", symbol = "circle", filled =
 FALSE, size = 0.09, color = "black", bar = FALSE), ...)
## S4 method for signature 'Date,qw'
timePlot(x, y, Plot = list(name = "", what = "points",
 type = "solid", width = "standard", symbol = "circle", filled = TRUE, size =
 0.09, color = "black"), yaxis.log = FALSE, yaxis.rev = FALSE,
 yaxis.range = c(NA, NA), xaxis.range = range(x, na.rm = TRUE),
 ylabels = 7, xlabels = "Auto", xtitle = "",
 ytitle = deparse(substitute(y)), caption = "", margin = c(NA, NA, NA,
 NA), Censored = list(name = "", what = "points", symbol = "circle", filled =
 FALSE, size = 0.09, color = "black", bar = FALSE), ...)
```

Arguments

х	the time/date data.
У	the y-axis data.
Plot	control parameters of the plot for uncensored data.
yaxis.log	log-transform the y axis?
yaxis.rev	reverse the y axis?
yaxis.range	set the range of the y-axis.

vcov.censReg

xaxis.range	set the range of the x-axis.
ylabels	set up y-axis labels. See linearPretty for details.
xlabels	set up x-axis labels. See Details .
xtitle	the x-axis title.
ytitle	the y-axis title.
caption	the figure caption.
margin	set up the plot area margins.
Censored	control parameters of the plot for censored data.
	arguments for specific methods.

Details

The value for xlabels must be one of "full," the full month names; "abbrev," abbreviations; or "letter," the first letter of the month. The default is "Auto," which selects one of the rpevious options based on the number of labels.

Value

Information about the graph.

vcov.censReg

Variance-Covariance Matrix

Description

Extracts the variance-covariance matrix of the main parameters from a censored regression object: method for "censReg" object.

Usage

```
## S3 method for class 'censReg'
vcov(object, ...)
```

Arguments

object	an object of class "censReg"—output from censReg.
	not used, further arguments passed to or from other methods.

Value

A matrix of the estimated covariances between the parameter estimates for each main parameter of the model. The matrix has row and column names corresponding to the parameter names.

See Also

censReg

View

Description

Invoke a spreadsheet-style data viewer on a matrix-like R object.

Usage

View(x, title)

Arguments

х	an R object that can be forecd to a character representation of a data frame.
title	the title for the viewer window. Defaults to the name of x.

Value

Invisibly returns NULL. The functions opens a widnow showing the formatted contents of x and returns immediately.

|--|

Description

Extracts the variance inflation factors (Helsel and Hirsch, 2002) from a censored regression object: method for "censReg" object.

Usage

S3 method for class 'censReg'
vif(model, ...)

Arguments

model	an object of class "censReg"—output from censReg.
	not used, further arguments passed to or from other methods.

Value

A named numeric vector containing the variance inflation factor for each variable.

References

Helsel, D.R. and Hirsch, R.M., 2002, Statistical methods in water resources: U.S. Geological Survey Techniques of Water-Resources Investigations, book 4, chap. A3, 522 p.

xyPlot-censored

See Also

censReg

xyPlot-censored Censored Data Methods for Function xyPlot

Description

Creates a line/scatter plot: selected methods for "lcens," "mcens," and "qw" data.

Setting xlabels to 0 or negative values will suppress ticks and labels. If negative, then try to create that absolute value number of labels. That can be useful for relative axes or specialized labeling, but is only valid for numeric x.

Usage

```
## S4 method for signature 'numeric,lcens'
xyPlot(x, y, Plot = list(name = "", what = "points",
 type = "solid", width = "standard", symbol = "circle", filled = TRUE, size =
 0.09, color = "black"), yaxis.log = FALSE, yaxis.rev = FALSE,
 yaxis.range = c(NA, NA), xaxis.log = FALSE, xaxis.range = c(NA, NA),
 ylabels = 7, xlabels = 7, xtitle = deparse(substitute(x)),
 ytitle = deparse(substitute(y)), caption = "", margin = c(NA, NA, NA,
 NA), Censored = list(name = "", what = "points", symbol = "circle", filled =
 FALSE, size = 0.09, color = "black", width = "hairline", bar = FALSE), ...)
## S4 method for signature 'numeric,qw'
xyPlot(x, y, Plot = list(name = "", what = "points",
 type = "solid", width = "standard", symbol = "circle", filled = TRUE, size =
 0.09, color = "black"), yaxis.log = FALSE, yaxis.rev = FALSE,
 yaxis.range = c(NA, NA), xaxis.log = FALSE, xaxis.range = c(NA, NA),
 ylabels = 7, xlabels = 7, xtitle = "",
 ytitle = deparse(substitute(y)), caption = "", margin = c(NA, NA, NA,
 NA), Censored = list(name = "", what = "points", symbol = "circle", filled =
 FALSE, size = 0.09, color = "black", width = "hairline", bar = FALSE), ...)
## S4 method for signature 'lcens,lcens'
xyPlot(x, y, Plot = list(name = "", what = "points",
 type = "solid", width = "standard", symbol = "circle", filled = TRUE, size =
 0.09, color = "black"), yaxis.log = FALSE, yaxis.rev = FALSE,
 yaxis.range = c(NA, NA), xaxis.log = FALSE, xaxis.range = c(NA, NA),
 ylabels = 7, xlabels = 7, xtitle = deparse(substitute(x)),
 ytitle = deparse(substitute(y)), caption = "", margin = c(NA, NA, NA,
 NA), Censored = list(name = "", what = "points", symbol = "circle", filled =
 FALSE, size = 0.09, color = "black", width = "hairline", bar = TRUE), ...)
```

S4 method for signature 'numeric,mcens'

```
xyPlot(x, y, Plot = list(name = "", what = "points",
  type = "solid", width = "standard", symbol = "circle", filled = TRUE, size =
  0.09, color = "black"), yaxis.log = FALSE, yaxis.rev = FALSE,
  yaxis.range = c(NA, NA), xaxis.log = FALSE, xaxis.range = c(NA, NA),
  ylabels = 7, xlabels = 7, xtitle = deparse(substitute(x)),
  ytitle = deparse(substitute(y)), caption = "", margin = c(NA, NA, NA,
  NA), Censored = list(name = "", what = "points", symbol = "circle", filled =
  FALSE, size = 0.09, color = "black", width = "hairline", bar = TRUE), ...)
```

Arguments

x	the x-axis data.
У	the y-axis data.
Plot	control parameters of the plot for uncensored data.
yaxis.log	log-transform the y axis?
yaxis.rev	reverse the y axis?
yaxis.range	set the range of the y-axis.
xaxis.log	logical, if TRUE, then log-transform the x axis.
xaxis.range	set the range of the x-axis.
ylabels	set up y-axis labels. See linearPretty for details.
xlabels	set up x-axis labels. See Details .
xtitle	the x-axis title.
ytitle	the y-axis title.
caption	the figure caption.
margin	set up the plot area margins.
Censored	control parameters of the plot for censored data. Same arguments as for Plot, but adds bar which if set to TRUE will draw lines from left-censored values to the minimum and draw lines from right-censored values to the maximum. No bars are drawn for interval censored values.
	additional arguments for specific methods.

Value

Information about the graph.

Note

A call should be made to setPage to set up the graphics environment before calling xyPlot.

[.lcens

Description

Extracts or subsets a vector: methods for "lcens," "mcens," and "qw" data.

Usage

```
## S3 method for class 'lcens'
x[i, ...]
## S3 method for class 'mcens'
x[i, ...]
## S3 method for class 'qw'
x[i, ...]
## S3 method for class 'qw'
subset(x, subset, ...)
```

Arguments

х	any R object to subset.
i	index specifying elements to extract.
	not used, required for other methods.
subset	an logical expression involving a slot name of the qw object.

Details

The values for i can be either numeric indexes or logical. Valid slot names are "remark.codes," "reporting.level," "reporting.method," "reporting.units," "analyte.method," "analyte.name," and "unique.code."

Value

A subset of the object x.

Note

In general, assignment of specific values should not be done using the "[" extraction operator because it does not modify the meta data assiciated with a value. But any value can be set to NA by treating the value as a matrix and setting the equivalent of the row to NA. See the example below.

See Also

[.qw

Examples

```
Xcens <- as.lcens(c(1, 2, 3, 4), 2)
# Extract the 3rd value
Xcens[3]
# Change the 3rd value to NA and print the data
Xcens[3,] <- NA
Xcens</pre>
```

%~=%

Possible Equality

Description

Checks for the possibility that two values are equal. If there is any overlap in range, they are considered possibly equal and TRUE is returned, otherwise FALSE is returned.

Usage

e1 %~=% e2

Arguments

e1	any vector that can be converted to class "mcens."
e2	any vector that can be converted to class "mcens."

Details

Missing values are permitted in either e1 or e2. wherever either are missing the returned element is set to NA.

Value

A logical vector that matches the length of the longer of e1 or e2, set to TRUE is there is overlap in the values, and FALSE otherwise.

See Also

Compare, qw, numeric-method

Examples

```
as.mcens(1, 2) %~=% 0.5
as.mcens(1, 2) %~=% 1.5
as.mcens(1, 2) %~=% 2.5
```

Index

* **IO** convert2qw, 46 convertFqw, 47 importNWISqw, 60 importQW, 61 pcodeNWISqw, 84 readNWQLd1, 108 * attribute censoring, 30 censorLevels, 31 length.lcens, 67 pctCens, 85 * censored censCor, 22 censKSample.test, 24 censMove.1,27 censMulticomp.test, 28 censoring, 30 censorLevels, 31 censReg, 38 censReg_AMLE.fit, 40 genWilcox.test, 58 kendallATS.test, 65 mean.lcens, 76 mean.qw,77 median.lcens, 78 pairedPratt.test, 81 pctCens, 85 plot.qw,89 ppw.test, 91 * classes lcens-class. 66 mcens-class, 72 qw-class, 103 * datasets atrazine.df, 15 atrazine.dl, 17 atrazine.spk, 18 convert2qw, 46

convertFqw, 47 importNWISqw, 60 importQW, 61 pcodeColData, 83 pcodeNWISqw, 84 * data rbindQW, 108 * hplot boxPlot.lcens, 19 dotPlot-censored, 50 ecdfPlot.lcens, 52 plot.censReg, 87 plot.ppw, 88 plot.qw, 89 plot.summary.censReg, 89 probPlot.lcens, 98 qqPlot.lcens, 100 timePlot-censored, 116 xyPlot-censored, 119 * htest censKSample.test, 24 censMulticomp.test, 28 censPPCC.test, 34 genWilcox.test, 58 kendallATS.test, 65 pairedPratt.test, 81 ppw.test, 91 * manip [.lcens, 121 %~=%, 122 Arith-censored, 6 as.character.lcens.7 as.data.frame.lcens,8 as.double.qw,9 as.lcens, 10 as.mcens, 11 as.qw, 13 censor, 29 censpp, 32

INDEX

```
Compare-censored, 45
    dlimit, 48
    fillIn. 54
    format.lcens, 56
    is.na.lcens, 64
    Math-censored, 69
    percentile.lcens, 86
    qwCoalesce, 105
    show-censored, 111
    sort.lcens, 112
* math
    percentile.lcens, 86
* methods
    Arith-censored, 6
    as.lcens, 10
    as.mcens.11
    as.gw, 13
    censor, 29
    Compare-censored, 45
    dotPlot-censored, 50
    Math-censored, 69
    show-censored, 111
    timePlot-censored, 116
    xyPlot-censored, 119
* misc
    mcenKM, 70
    mcenMLE, 71
    mcenROS, 71
    mdlAMLE, 73
    mdlKM, 73
    mdlKMstats.74
    mdlMLE, 74
    mdlROS, 75
    sdlFill, 111
    summary.lcens, 115
* nonparametric
    censMulticomp.test, 28
* package
    smwrQW-package, 5
* print
    print.lcens, 97
* regression
    censMove.1, 27
    censReg, 38
    extractAIC.censReg, 53
    fitted.censReg, 55
    nobs.censReg, 81
    plot.censReg, 87
```

plot.summary.censReg, 89 residuals.censReg, 109 summary.censReg, 114 vcov.censReg, 117 vif.censReg, 118 * summary censCor, 22 * univariate censStats, 41 mean.lcens, 76 mean.qw,77 median.lcens, 78 * univar censMean.CI, 25 censQtiles.CI, 35 censOuantile. 36 censSumStats, 42 percentile.lcens, 86 quantile.lcens, 102 * utilities censReg_AMLE.fit, 40 makeColNames, 69 print.censMCT, 94 print.censQuantile,95 print.censReg, 96 print.censStats, 96 print.summary.censReg, 98 [.lcens, 121 [.mcens ([.lcens), 121 [.qw, 121 [.qw([.lcens), 121 %~=%, 122

add, 5, 7 Arith,lcens,lcens-method (Arith-censored), 6 Arith,lcens,numeric-method (Arith-censored), 6 Arith,mcens,mcens-method (Arith-censored), 6 Arith,mcens,numeric-method (Arith-censored), 6 Arith,numeric,lcens-method (Arith-censored), 6 Arith,numeric,mcens-method (Arith-censored), 6 Arith,numeric,qw-method (Arith-censored), 6

INDEX

Arith, qw, numeric-method (Arith-censored), 6 Arith, gw, gw-method (Arith-censored), 6 Arith-censored, 6 as.character.lcens,7 as.character.mcens (as.character.lcens), 7 as.character.qw(as.character.lcens), 7 as.data.frame.lcens,8 as.data.frame.mcens (as.data.frame.lcens), 8 as.data.frame.qw(as.data.frame.lcens), as.double.gw, 9, 55 as.lcens, 10, 30 as.lcens, character, missing, missing-method (as.lcens), 10 as.lcens,lcens,missing,missing-method (as.lcens), 10 as.lcens,numeric,missing,character-method (as.lcens), 10 as.lcens,numeric,missing,logical-method (as.lcens), 10 as.lcens,numeric,missing,missing-method (as.lcens), 10 as.lcens,numeric,numeric,character-method (as.lcens), 10 as.lcens,numeric,numeric,logical-method (as.lcens), 10 as.lcens,numeric,numeric,missing-method (as.lcens), 10 as.lcens,qw,missing,missing-method (as.lcens), 10 as.lcens,qw,numeric,missing-method (as.lcens), 10 as.mcens, 11, 11, 30, 105 as.mcens, character, missing, missing-method (as.mcens), 11 as.mcens,lcens,missing,missing-method (as.mcens), 11 as.mcens,mcens,missing,missing-method (as.mcens), 11 as.mcens,numeric,missing,character-method (as.mcens), 11 as.mcens,numeric,missing,integer-method (as.mcens), 11 as.mcens,numeric,missing,missing-method (as.mcens), 11

as.mcens,numeric,missing,numeric-method (as.mcens), 11 as.mcens,numeric,numeric,missing-method (as.mcens), 11 as.mcens,qw,missing,missing-method (as.mcens), 11 as.gw, 13 as.gw,numeric,character,character,numeric,character,charac (as.qw), 13 as.qw,numeric,character,character,numeric,character,charac (as.qw), 13 atrazine.df, 15 atrazine.dl, 17 atrazine.spk, 18 boxPlot, 20 boxPlot.data.frame (boxPlot.lcens), 19 boxPlot.lcens, 19 boxPlot.qw(boxPlot.lcens), 19 boxPlotCensStats, 21 c.lcens, 21 c.mcens (c.lcens), 21 c.qw(c.lcens), 21 censCor, 22 censKSample.test, 24, 29, 95 censMean.CI, 25 censMove.1, 27 censMulticomp.test, 28, 95 censor, 29 censoring, 30, 32, 85 censorLevels, 31, 31 censpp, 32, 35 censPPCC.test, 34 censQtiles.CI, 35 censQuantile, 36, 36, 78, 103 censReg, 38, 40, 41, 45, 53, 56, 68, 81, 87, 90, 94, 96, 98, 110, 115, 117, 119 censReg_AMLE.fit, 40 censReg_AMLE.pred, 40 censReg_MLE.fit (censReg_AMLE.fit), 40 censStats, 26, 41, 76, 77 censSumStats, 42 code01, 43 codeU, 44 coef.censReg, 44, 96, 98 Compare,lcens,numeric-method (Compare-censored), 45

Compare, mcens, numeric-method (Compare-censored), 45 Compare, numeric, lcens-method (Compare-censored), 45 Compare, numeric, mcens-method (Compare-censored), 45 Compare, numeric, qw-method (Compare-censored), 45 Compare, qw, numeric-method (Compare-censored), 45 Compare-censored, 45 convert2qw, 46, 48 convertFqw, 47

data.frame, 8
dlimit, 48
dotPlot,mcens-method
 (dotPlot-censored), 50
dotPlot,qw-method(dotPlot-censored), 50
dotPlot-censored, 50

ecdf, 86 ecdfPlot.lcens, 52 ecdfPlot.qw(ecdfPlot.lcens), 52 extractAIC, 53 extractAIC.censReg, 53

fillIn, 9, 20, 54
fitted.censReg, 55
format.lcens, 56
format.mcens(format.lcens), 56
format.qw(format.lcens), 56

gehanScores, 57
genWilcox.test, 58, 95

importNWISqw, 15, 60, 63
importQW, 61
imputeLessThans, 63, 80
is.na.lcens, 64
is.na.mcens (is.na.lcens), 64
is.na.qw (is.na.lcens), 64

kendallATS.test, 65

lcens-class, 66 length.lcens, 67 length.mcens (length.lcens), 67 length.qw (length.lcens), 67 linearPretty, 20, 52, 99, 101, 117, 120 logLik.censReg, 68 lrDA, 79, 80 1rEM, 64 makeColNames, 47, 61-63, 69 Math, lcens-method (Math-censored), 69 Math, mcens-method (Math-censored), 69 Math, qw-method (Math-censored), 69 Math-censored, 69 mcenKM, 70 mcenMLE, 71 mcenROS, 71 mcens-class, 72 mdlAMLE, 42, 73 mdlKM, 42, 73 mdlKMstats, 42, 74 md1MLE, 42, 74 md1ROS, 42, 75 mean.lcens, 76 mean.mcens (mean.lcens), 76 mean.qw, 77, 105 median.lcens, 78 median.mcens (median.lcens), 78 median.gw(median.lcens), 78 mImputeLessThans, 64, 79 move.1, 28 multiply, 80

```
nobs.censReg, 81
```

lm, 39

p.adjust, 29 pairedPratt.test, 81 pcodeColData, 69, 83 pcodeNWISqw, 69, 84 pctCens, 85 percentile.lcens, 86 percentile.qw (percentile.lcens), 86 plot.censReg, 87, 90 plot.genWilcox (plot.ppw), 88 plot.ppw, 88 plot.qw, 89 plot.summary.censReg, 89 pow, 91 ppcc.test, 35 ppoints, 33 ppw.test, 82, 91 predict.censReg, 93 predictMVUE, 94

INDEX

print.censMCT, 94 print.censQuantile,95 print.censReg, 96 print.censStats, 96 print.lcens, 97 print.mcens (print.lcens), 97 print.qw(print.lcens), 97 print.summary.censReg, 98 probPlot.lcens, 53, 98, 102 probPlot.qw(probPlot.lcens), 98 probPretty, 99 qqPlot.lcens, 100, 100 qqPlot.qw(qqPlot.lcens), 100 quantile, 37, 103 quantile.lcens, 37, 102 quantile.mcens(quantile.lcens), 102 quantile.qw(quantile.lcens), 102 qw-class, 103 qw2mcens, 105 qwCoalesce, 105 qwRPD, 106 ratio, 7, 107 rbind, 108 rbindQW, 108 readNWISpCode, 84

readNWISpCode, 84
readNWISqw, 47, 48, 61, 63
readNWQLdl, 50, 108
residuals.censReg, 109
residuals.survreg, 110
rmse.censReg, 110
rpd, 107

```
sdlFill, 111
setPage, 51
setPlot, 100
show,lcens-method (show-censored), 111
show,mcens-method (show-censored), 111
show,qw-method (show-censored), 111
show-censored, 111
show-censored, 111
smwrQW-package, 5
sort.lcens, 112
sort.mcens (sort.lcens), 112
splitQual, 113
str, 114
str.lcens, 113
str.mcens (str.lcens), 113
str.qw (str.lcens), 113
```

subset.qw([.lcens), 121 summary.censReg, 87, 114 summary.lcens, 115 summary.mcens(summary.lcens), 115 summary.qw(summary.lcens), 115 Surv, 13 survdiff, 25, 58, 59, 92 survfit, 58, 59, 92 survreg, 39, 40

timePlot,Date,lcens-method
 (timePlot-censored), 116
timePlot,Date,qw-method
 (timePlot-censored), 116
timePlot-censored, 116

vcov.censReg,117 View,118 vif.censReg,118

```
xyPlot,Date,qw-method
  (xyPlot-censored), 119
xyPlot,lcens,lcens-method
  (xyPlot-censored), 119
xyPlot,numeric,lcens-method
  (xyPlot-censored), 119
xyPlot,numeric,mcens-method
  (xyPlot-censored), 119
xyPlot,numeric,qw-method
  (xyPlot-censored), 119
xyPlot-censored, 119
```