
Computing Summary Statistics for Daily Data

Dave Lorenz

November 19, 2024

Abstract

These examples demonstrate how to compute selected summary statistics for daily

stream�ow data. The examples can easily be extended to other statistics or data types.

Contents

1 Introduction 2

2 Computing Daily Mean Values 3

3 Computing Annual Mean Values 5

4 Computing Yearly and Monthly Mean Values 6

1

1 Introduction

These examples use data from the smwrData package. The data are retrieved in the following code.

> # Load the smwrBase and smwrData packages

> library(smwrBase)

> library(smwrData)

> # Retrieve streamflow data for the Choptank River near Greensboro, Maryland

> data(ChoptankFlow)

> # Print the first and last few rows of the data

> head(ChoptankFlow)

agency_cd site_no datetime Flow Flow_cd

1 USGS 01491000 1990-01-01 385 A

2 USGS 01491000 1990-01-02 649 A

3 USGS 01491000 1990-01-03 353 A

4 USGS 01491000 1990-01-04 246 A

5 USGS 01491000 1990-01-05 225 A

6 USGS 01491000 1990-01-06 214 A

> tail(ChoptankFlow)

agency_cd site_no datetime Flow Flow_cd

8030 USGS 01491000 2011-12-26 245 A

8031 USGS 01491000 2011-12-27 224 A

8032 USGS 01491000 2011-12-28 337 A

8033 USGS 01491000 2011-12-29 370 A

8034 USGS 01491000 2011-12-30 255 A

8035 USGS 01491000 2011-12-31 221 A

> # Check for missing values

> with(ChoptankFlow, screenData(datetime, Flow, year = "calendar"))

No missing data between 1990-01-01 and 2011-12-31

2

2 Computing Daily Mean Values

The simplest and most straightforward way to compute summary statistics from arbitrarily
grouped data is to use the tapply function. At its simplest, it requires only three arguments�X,
the data to summarize; INDEX, the grouping data; and FUN, the summary statistic function.

The smwrBase package contains the baseDay function that can be used to group data by day, so
that all data for each day, including February 29, can be summarized. The output can be arranged
so that the sequence represents the calendar year, water year, or climate year, beginning January
1, October 1, or April 1, respectively.

The following script demonstrates how to use the tapply and baseDay functions to compute the
daily mean stream�ow for the previously retrieved data. It uses the with function to facilitate
referring to columns in the dataset.

> # There are no missing values, so only need the basic

> # 3 arguments for tapply

> ChoptankFlow.daily <- with(ChoptankFlow, tapply(Flow,

+ baseDay(datetime, numeric=FALSE, year="calendar"), mean))

> # Print the first and last few values of the output

> head(ChoptankFlow.daily)

Jan 01 Jan 02 Jan 03 Jan 04 Jan 05 Jan 06

144.8182 183.7727 174.6818 171.9091 159.4545 146.3182

> tail(ChoptankFlow.daily)

Dec 26 Dec 27 Dec 28 Dec 29 Dec 30 Dec 31

245.2727 276.3636 192.6818 161.4091 143.2727 135.9545

The output from tapply is an array. Because the output from the baseDay function is an array of
one dimension, it is printed in the form of a named vector. Di�erent summary statistic functions
will produce di�erent outputs; for example, if the summary function had been quantile, the
output would have been a list.

The tapply function is very powerful and easy to use; however, there are times when we want the
output in the form of a dataset rather than a vector or array. In those cases, the aggregate
function is a better alternative than the tapply function. The aggregate function has several
usage options. The script below demonstrates how to build a formula to compute the same
statistics that we computed in the previous script. Early versions of aggregate required the
output of the summary statistic function to be a scalar, but that is no longer a limitation.

> # There are no missing values

> ChoptankFlow.dailyDF <- aggregate(Flow ~

+ baseDay(datetime, numeric=FALSE, year="calendar"),

+ data=ChoptankFlow, FUN=mean)

> # Print the first and last few values of the output

> head(ChoptankFlow.dailyDF)

baseDay(datetime, numeric = FALSE, year = "calendar") Flow

1 Jan 01 144.8182

3

2 Jan 02 183.7727

3 Jan 03 174.6818

4 Jan 04 171.9091

5 Jan 05 159.4545

6 Jan 06 146.3182

> tail(ChoptankFlow.dailyDF)

baseDay(datetime, numeric = FALSE, year = "calendar") Flow

361 Dec 26 245.2727

362 Dec 27 276.3636

363 Dec 28 192.6818

364 Dec 29 161.4091

365 Dec 30 143.2727

366 Dec 31 135.9545

> # Rename the grouping column

> names(ChoptankFlow.dailyDF)[1] <- "Day"

Note that the grouping column, renamed Day in the last line of code, is a factor. If character data
are needed, executing the expression:
ChoptankFlow.dailyDF$Day <- as.character(ChoptankFlow.dailyDF$Day)

will convert the column Day to character.

4

3 Computing Annual Mean Values

The previous example can easily be expanded to any grouping. This example computes annual
means by calendar year. The year function in lubridate is used to group the data by calendar
year, and the grouping column is renamed CalYear. The waterYear function in smwrBase can be
used to group the data by water year.

> # There are no missing values

> ChoptankFlow.yrDF <- aggregate(Flow ~

+ year(datetime),

+ data=ChoptankFlow, FUN=mean)

> # Rename the grouping column

> names(ChoptankFlow.yrDF)[1] <- "CalYear"

> # Print the first few values of the output

> head(ChoptankFlow.yrDF)

CalYear Flow

1 1990 114.67945

2 1991 99.54521

3 1992 85.62568

4 1993 119.65726

5 1994 203.11233

6 1995 94.18000

Other grouping functions include month (month) in lubridate, seasons (user-de�ned seasons) in
smwrBase. Refer to the documentation for each of these functions for a description of the
arguments.

5

4 Computing Yearly and Monthly Mean Values

Aggregation can also be done by multiple grouping variables. This example computes the mean
stream�ow for each month by year. This example uses the year and the month functions because
the output is sorted by groups. The sequence of the groups in the call is important�the sorting is
done in the order speci�ed in the formula. For this example, the data are sorted by month and
then by year, which in this case, keeps the order correct; grouping by water year would misplace
October, November, and December. For a calendar year table, the months are in the correct order.

> # There are no missing values

> ChoptankFlow.my <- aggregate(Flow ~ month(datetime, label=TRUE) + year(datetime),

+ data=ChoptankFlow, FUN=mean)

> # Rename columns 1 and 2

> names(ChoptankFlow.my)[1:2] <- c("Month", "Year")

> # Print the first few values of the output

> head(ChoptankFlow.my)

Month Year Flow

1 Jan 1990 238.5161

2 Feb 1990 152.0357

3 Mar 1990 137.5806

4 Apr 1990 223.6667

5 May 1990 288.8710

6 Jun 1990 108.4333

The output dataset may be used as is, or it could be restructured to a table of monthly values for
each calendar year. To create a table by water year, the levels in the column Month must be
reordered to begin in October and end in September.

> # Restructure the dataset

> ChoptankFlow.myTbl <- group2row(ChoptankFlow.my, "Year", "Month", "Flow")

> # Print the first few values of the output, set width for Vignette

> options(width=70)

> head(ChoptankFlow.myTbl)

Year Jan.Flow Feb.Flow Mar.Flow Apr.Flow May.Flow Jun.Flow

1 1990 238.51613 152.03571 137.5806 223.66667 288.87097 108.43333

2 1991 252.35484 108.85714 182.6452 192.10000 88.74194 69.80000

3 1992 80.93548 84.10345 197.8065 109.76667 115.00000 79.80000

4 1993 174.29032 172.67857 512.1935 312.36667 107.77419 39.56667

5 1994 210.25806 372.57143 826.2903 331.33333 120.96774 55.83333

6 1995 183.54839 122.60714 221.8065 84.03333 107.16129 46.86667

Jul.Flow Aug.Flow Sep.Flow Oct.Flow Nov.Flow Dec.Flow

1 58.83871 44.580645 23.800000 29.58065 23.83333 47.48387

2 93.93548 48.032258 25.833333 26.58065 24.63333 79.16129

3 24.19355 62.838710 40.366667 39.19355 69.00000 123.00000

4 13.03871 9.812903 9.526667 13.11935 20.63333 52.90323

5 75.03226 157.387097 96.300000 55.51613 59.23333 84.32258

6 23.87097 17.777419 15.520000 53.32258 123.90000 129.06452

6

Note that this example used the group2row function in smwrBase. The reshape function in stats

and stack and unstack functions in utils are other functions that will restructure data.

7

	Introduction
	Computing Daily Mean Values
	Computing Annual Mean Values
	Computing Yearly and Monthly Mean Values

