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Abstract

These examples demonstrate how to use functions with the smwrBase package that

transform explanatory variables to help model response-explanatory variable relations

commonly found in hydrologic data. These examples use a single explanatory variable with

synthetic data to illustrate how to model the relations. As with most hydrologic relations, the

data are assumed to be log-log related.

These examples assume that the user is familiar with general knowledge about linear

regression and how to build models in R. The examples simply illustrate some functions in the

smwrBase package using the DF dataset without any recommendation of application.
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1 Introduction

All of the examples use the example data created by the code immediately following this
paragraph. The data in the dataset called DF are all synthetic data constructed to demonstrate a
regression strategy for a particular pattern of data.

> # Load the smwrBase package

> library(smwrBase)

> # Construct the synthetic data

> DF <- structure(list(Date = structure(c(14885, 14922, 14960,

+ 14998, 15036, 15074, 15112, 15150, 15188, 15226, 15263,

+ 15301, 15339, 15377, 15415, 15453, 15491, 15529, 15567,

+ 15605), class = "Date"),

+ Flow = c(409, 509, 221, 2180, 4010, 2380, 6650, 3960, 3860,

+ 558, 776, 1130, 1390, 1310, 2280, 2820, 1900, 1070, 483, 192),

+ Y1 = c(0.55, 0.65, 0.55, 1.18, 1.56, 1.17, 1.97, 1.38, 1.64,

+ 0.74, 0.7, 0.88, 0.85, 0.96, 1.03, 1.26, 1.09, 0.8, 0.71, 0.52),

+ Y2 = c(0.52, 0.5, 0.49, 2.15, 2.5, 1.59, 2.34, 1.64, 1.9, 0.4,

+ 0.77, 0.88, 1.81, 1.11, 1.69, 1.52, 1.28, 0.74, 0.55, 0.45),

+ Y3 = c(0.56, 0.65, 2.4, 2.54, 3.34, 0.75, 0.78, 0.35, 0.5, 0.31,

+ 0.51, 2.23, 2.03, 2.41, 1.77, 1.19, 0.53, 0.35, 0.56, 0.33)),

+ .Names = c("Date", "Flow", "Y1", "Y2", "Y3"),

+ row.names = c(NA, -20L), class = "data.frame")

> # Print the first few rows

> head(DF)

Date Flow Y1 Y2 Y3

1 2010-10-03 409 0.55 0.52 0.56

2 2010-11-09 509 0.65 0.50 0.65

3 2010-12-17 221 0.55 0.49 2.40

4 2011-01-24 2180 1.18 2.15 2.54

5 2011-03-03 4010 1.56 2.50 3.34

6 2011-04-10 2380 1.17 1.59 0.75
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2 Modeling Nonlinear Log-log Relations

Many hydrologic relations are approximately linear and homoscedastic when both the response and
the explanatory variables are log transformed (either common or natural logarithms can be used).
However, the relation will occasionally have some nonlinearity that must be resolved as shown in
�gure 1.
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Figure 1. A curved log-log relation.

This example demonstrates three approaches for modeling the relation�adding a second-order
polynomial term, a ladder-of-powers transformation, and a hyperbolic transformation. No attempt
is made to evaluate other linear regression model assumptions, but the residual sum of squares is
minimized for the ladder-of-powers and hyperbolic transformations.

A very common and easy to use approach to modeling the nonlinearity shown in �gure 1 is to add
second- or higher-order polynomial terms for the explanatory variable. The poly in stats is
distributed in base R, but it has options only for orthonormal terms, which cannot be directly
interpreted, or raw terms, which can produce very large variance in�ation factors. The function
quadratic in smwrBase overcomes both of the limitations, but only produces the �rst- and
second-order terms. Its use is straightforward as there is no need to specify separate �rst- and
second-order terms. Use as shown in the code below. The �tted line is shown in �gure 2.
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> # The model with a second-order polynomial term

> lm(log10(Y1) ~ quadratic(log10(Flow)), data=DF)

Call:

lm(formula = log10(Y1) ~ quadratic(log10(Flow)), data = DF)

Coefficients:

(Intercept) quadratic(log10(Flow))(3.03898)1

-0.07486 0.37284

quadratic(log10(Flow))(3.03898)2

0.13653
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Figure 2. A curved log-log relation with a second-order polynomial �t.

The names of the coe�cients can be cumbersome, but they are derived from the name of the term
in the formula, quadratic(log10(Flow)), followed by the centering value in parenthesis and the
order, 1 for the �rst-order term and 2 for the second-order term. The centering value is subtracted
from the values and produces orthogonal �rst- and second-order terms by default.

The coe�cients can be directly interpreted. For the quadratic function, the slope at the centering
value is equal to the the coe�cient for the �rst-order term, 0.37284 for these data. Because the
sign of the second-order term is positive, the slope increases for increasing �ow and decreases for

4



decreasing �ow. It is sometimes useful to know where the slope is 0. The equation to �nd where
the slope is zero is -2 divided by the coe�cient for the second-order term times the coe�cient for
the �rst-order term plus the centering value. For this model: -2 / 0.13653 * 0.37284 + 3.03898 =
-2.4227 in log units or about 0.004 when converted back to �ow units.

Second-order �ts can occasionally produce hydrologically undesirable results, for example reversals
in the response relation on either side of the zero-slope value, or extraordinarily large response
values extrapolated outside of the calibration data. Helsel and Hirsch (2002) discuss the
ladder-of-powers transformation, which can sometimes be used to reduce the likelihood of the
reversals. The boxCox function in smwrBase can be used to construct several candidate models,
selecting the �best� �t for the power.

For this example, the minimum sum of squared residuals will be used as the criterion for �best� �t.
The deviance function in stats computes the model deviance, which for a linear regression model
is the sum of the squared residuals. In general, the minimum deviance model is not necessarily
desirable, but one needs to �nd a good, broadly applicable model (Helsel and Hirsch, 2002). This
example will look at increments of 0.25 between 0 (equivalent to a log transform) and 1 (equivalent
to linear) in the script below. The direction and range of the transforms to try can be inferred
from Helsel and Hirsch (2002).

> # Try models with ladder of powers between 0 and 1

> deviance(lm(log10(Y1) ~ boxCox(Flow, 0.), data=DF))

[1] 0.02845197

> deviance(lm(log10(Y1) ~ boxCox(Flow, 0.25), data=DF))

[1] 0.01636857

> deviance(lm(log10(Y1) ~ boxCox(Flow, 0.50), data=DF))

[1] 0.02017803

> deviance(lm(log10(Y1) ~ boxCox(Flow, 0.75), data=DF))

[1] 0.0378018

> deviance(lm(log10(Y1) ~ boxCox(Flow, 1.), data=DF))

[1] 0.0653619

The minimum sum of squared residuals was for the fourth-root transform (0.25). The printed
results of the regression model are shown in the script below, and the �tted line is shown in �gure 3.

> # The model with fourth-root transform

> lm(log10(Y1) ~ boxCox(Flow, 0.25), data=DF)
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Call:

lm(formula = log10(Y1) ~ boxCox(Flow, 0.25), data = DF)

Coefficients:

(Intercept) boxCox(Flow, 0.25)

-0.5956165 0.0001308
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Figure 3. A log-log plot with a curved ladder-of-powers �t.

Another option for �tting data like these is the hyperbolic transform advocated by Johnson and
others (1969). The hyperbolic function in smwrBase can be used for this transform. The
hyperbolic transform can be thought of as a way to model mixing of di�erent concentrations at
high and low �ows. The data represented by Y1 can be thought of as having a lower bound but
increasing as �ow increases. These are modeled by values for the factor argument less than 0. If
the data can be thought of as having an upper bound at high �ows and dilution at lower �ows,
then the values for factor argument should be greater than 0. In general, there is no reason for
the value of factor to be greater than 3 or less than -3.

As with the ladder-of-powers example, the �best� model will be selected as shown in the scripts
below. It will be done in two sessions, the �rst to set the limits for the second.

> # Try models with hyperbolic factors from 0 to -3

> deviance(lm(log10(Y1) ~ hyperbolic(Flow, factor=0), data=DF))
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[1] 0.01929823

> deviance(lm(log10(Y1) ~ hyperbolic(Flow, factor=-1), data=DF))

[1] 0.0427687

> deviance(lm(log10(Y1) ~ hyperbolic(Flow, factor=-2), data=DF))

[1] 0.06238566

> deviance(lm(log10(Y1) ~ hyperbolic(Flow, factor=-3), data=DF))

[1] 0.06505505

> # Try models with hyperbolic factors from 0 to -.75 (negtive 1 can be excluded)

> deviance(lm(log10(Y1) ~ hyperbolic(Flow, factor=0), data=DF))

[1] 0.01929823

> deviance(lm(log10(Y1) ~ hyperbolic(Flow, factor=-.25), data=DF))

[1] 0.01688832

> deviance(lm(log10(Y1) ~ hyperbolic(Flow, factor=-.50), data=DF))

[1] 0.02267335

> deviance(lm(log10(Y1) ~ hyperbolic(Flow, factor=-.75), data=DF))

[1] 0.0326104

The minimum sum of squared residuals was for the factor value of -.25. The printed results of the
regression model is shown in the script below and the �tted line in �gure 3. For this simple linear
regression model, the lower bound concentration can be computed as 10 raised to the power of the
value of the intercept, which gives a value of about 0.493.

> # The model with the hyperbolic transform

> lm(log10(Y1) ~ hyperbolic(Flow, factor=-.25), data=DF)

Call:

lm(formula = log10(Y1) ~ hyperbolic(Flow, factor = -0.25), data = DF)

Coefficients:

(Intercept) hyperbolic(Flow, factor = -0.25)

-0.307090 0.000239
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Figure 4. A curved log-log relation with a hyperbolic �t.

All of the models �t the data better than the simple, linear �t. The hyperbolic model
overestimates the smallest couple of values, but in general that transform does a fair job of �tting
certain kinds of mixture models, particularly when the concentration approaches a maximum or
minimum value at large �ows.
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3 Modeling Flow Mixture Relations

As described in the latter part of the previous section, there can be times when the
�ow-concentration relation represents a mixture model with di�erent source concentrations at high
and low �ows. The sCurve function in smwrBase is a very �exible transform for modeling �ow
mixture models. It is much more �exible than the hyperbolic function but requires the �tting of
more arguments. The �tted arguments are location, which is the transition point in the curve;
scale, which describes the rate of change at the transition point; and shape, which controls how
quickly the curve approaches the limits. Both scale and shape must be greater than 0.

The data in this case are Y2 in the DF dataset. Figure 5 shows the relation between �ow and Y2
with a LOWESS smooth to help �t the curve. The sequence of scripts below show one manual
approach to �tting the �ow mixture model.
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Figure 5. A �ow mixture model relation.

Inspection of �gure 5 shows that the transition appears to be at a �ow value a bit larger than
1,000 and less than 1,500. The �rst attempt at the model building will be to use 1,200 as the value
for location. Because the data are common-log transformed, the value for location must also be
common-log transformed. The �t is constructed in the script below and corresponding graph is
shown in �gure 6.
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> # The model with the hyperbolic transform

> lm(log10(Y2) ~ sCurve(log10(Flow), location=log10(1200)), data=DF)

Call:

lm(formula = log10(Y2) ~ sCurve(log10(Flow), location = log10(1200)),

data = DF)

Coefficients:

(Intercept)

0.00196

sCurve(log10(Flow), location = log10(1200))

0.90982
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Figure 6. A log-log relation with a curved �t.

The slope indicated by the data at the transition point in �gure 6 is much greater than 1, so
increase scale and re�t.

> # The model with the sCurve transform

> lm(log10(Y2) ~ sCurve(log10(Flow), location=log10(1200), scale=5), data=DF)

Call:
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lm(formula = log10(Y2) ~ sCurve(log10(Flow), location = log10(1200),

scale = 5), data = DF)

Coefficients:

(Intercept)

-0.004898

sCurve(log10(Flow), location = log10(1200), scale = 5)

0.420611
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Figure 7. A �ow-mixture modeled using the sCurve function.

The curve in �gure 7 shows a very good �t to the data. There is no reason to pursue further
modi�cations to the arguments to sCurve. The sCurve function is most sensitive to the location
and scale arguments. The shape argument may only need to be adjusted when the scatter of the
�t is small.
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4 Modeling Seasonal Variation

Helsel and Hirsch (2002, section 12.4.3) describe multiple regression with periodic functions to
model seasonal variability. They describe the approach by adding two variables, one for the sine
and one for the cosine of annual time. The fourier function in smwrBase simpli�es the addition of
those variables by adding both sine and cosine transformations to the model. Use of the function
also forces both or neither to be considered in best-subset selection procedures. The k.max
argument can be used to add higher-order seasonal terms; the k.max argument is the number of
cycles per year.

This example uses column Y3 in the DF dataset with Date as the explanatory variable. The script
below shows how to construct the model, and the �t is shown in �gure 8.

> # The model with fourier transform

> lm(log10(Y3) ~ fourier(Date), data=DF)

Call:

lm(formula = log10(Y3) ~ fourier(Date), data = DF)

Coefficients:

(Intercept) fourier(Date)sin(k=1) fourier(Date)cos(k=1)

-0.04152 0.23159 0.38081
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Figure 8. A periodic seasonal pattern �tted using the fourier function.

The names of the coe�cients can be cumbersome, but they are derived from the name of the term
in the formula, fourier(Date), followed by either sin or cos (indicating the transform), and the
order of the term in parenthesis.
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